
Recap of last lecture

•How to represent images as matrices

•Nuisance factors in pixel intensity data

•Data reduction in computer vision and Marr's hierarchy

•Image structures: featureless regions, edges and corners

•Edge detection in 1D (and how to do it quickly)

•Edge detection in 2D (and how to do it quickly)

•Implementation details (truncated summations; convolution)

Summary

NE Tag = Non Examinable

VE Tag = Very Examinable

The Aperture Problem

Image credits: "Animated Example of the Aperture Problem", Bas Rokers. https://en.wikipedia.org/wiki/Motion_perception#/media/File:Aperture_problem_animated.gif

The problem with edges

Suppose you are asked to look down
through an opening and observe a
grate moving below you
Which way is the grate moving?

Down and to the right? Straight
down? Only to the right?

It is impossible to tell!

Can only measure motion normal to the edge

Edges are a powerful intermediate
representation but they are sometimes
insufficient

This is especially the case when image
motion is being analysed

The motion of an edge is rendered
ambiguous by the aperture problem:
when viewing a moving edge, it is only
possible to measure the motion normal
to the edge locally

Corners to the rescue

To measure image motion
in 2D completely, we can
look at corner features

We saw earlier that a
corner is characterised by
an intensity discontinuity in
two directions (this
discontinuity can be
detected using correlation)

(x, y)
.

image, I

patch, P
v

u

c(x, y)

(
n

∑
u=−n

n

∑
v=−n

(P(u, v) − P̄)2) (
n

∑
u=−n

n

∑
v=−n

(I(x + u, y + v) − Īx,y)2)

Cross-correlation - another important operator
Normalised cross-correlation

Normalised cross-correlation measures how well an image patch matches
portions of an image, , that share the same size as the patch

P(u, v)
I(x, y)

n

∑
u=−n

n

∑
v=−n

(P(u, v) − P̄)(I(x + u, y + v) − Īx,y)

Note: cross-correlation is normalised to by computing it from the covariance and
variances of the two signals/patches (adds robustness to illumination changes)

[−1,1]

P̄ Īx,y

P̄ Īx,y

c(x, y) =

 is the mean pixel value of the patchP̄
 is the mean pixel value of the image under the patchĪx,y

covariance

variance of patch variance of image under patch

Visualisation

1 0 2 0

1 0 0 1I(x, y)

1 0 1 0

P(u, v)

1 0

1 0

c(x, y)
1 −0.6 0.3

1 −0.6 0

If we multiply numerator & denominator of by we can interpret terms as
covariance, variance of the patch and variance of the image under patch

c(x, y) 1/n2

It entails sliding the patch over the image, computing the sum of the products of the
pixels and normalising the result:

1 0

1 0

no flipping!

(to 1 decimal
place)

Note: software often pads
edges of with zeros so
that is same shape as
(unpadded)

I(x, y)
c(x, y)

I(x, y)

Examples of
paired pixels

Cross-correlation - corners
cross-correlation peaks at corners

A patch with a well-defined peak in its autocorrelation (self cross-correlation) function can be classified as a "corner"

Auto-correlation with featureless
patch

P

I(x, y) c(x, y)

Featureless

Auto-correlation with an edge
patch

P

I(x, y) c(x, y)

Edge

Auto-correlation with a corner
patch

P

I(x, y) c(x, y)

Corner

No clear peak in c(x, y) Produces ridge in c(x, y) Produces clear peak in !c(x, y)

peak

Sum of squared differences and cross-correlation

The sum-of-squared-differences (SSD), or squared Euclidean distance,
is a popular metric for comparing patch similarity

It is computed between a patch containing
pixels, and another of the same size in an image via:

The (unnormalised) cross-correlation (simpler variant) is given by:

If we expand the expression for , we obtain:

P(u, v) (2n + 1) × (2n + 1)
I(x, y)

SSD(x, y) =
n

∑
u=−n

n

∑
v=−n

(P(u, v) − I(x + u, y + v))2

UCC(x, y) =
n

∑
u=−n

n

∑
v=−n

P(u, v)I(x + u, y + v)

SSD(x, y)

SSD(x, y) =
n

∑
u=−n

n

∑
v=−n

P(u, v)2 − 2P(u, v)I(x + u, y + v) + I(x + u, y + v)2

Definitions The link
To see the link, note that:

1. The first patch term in , , is
constant w.r.t

2. In natural images pixel values often vary
smoothly so we can approximate last term
in , , by a constant
(when summing over , this term will have
significant overlap for neighbouring)

With these observations, we have that:

Thus, we see that greater cross-correlation
implies greater similarity (a smaller distance)
under the metric

SSD(x, y) P(u, v)2

x, y

SSD(x, y) I(x + u, y + v)2

u, v
x, y

SSD(x, y) ≈ − 2 ⋅ UCC(x, y) + constant

SSDconstant approx. constant

Useful reference: http://www.cse.yorku.ca/~kosta/CompVis_Notes/ssd_cross-correlation.pdf

Suppose animal classifier works at one scale

The importance of scale invariance
Our dream: invariance

Dog Dog Wolf

To work in the real world, we want our models to be
invariant to certain properties of objects

Example: Invariance to scale in object recognition: if our
model gives the same output for different scales of input, it
is said to be "scale invariant"

How to achieve invariance?

Prediction

zoom x1.25zoom x1zoom x0.75

Invariant across
these scales

Not invariant
across these scales

We want to be able to recognise tigers while they are still in
the distance as well as close up...

zoom x1.25zoom x1zoom x0.75

Estimated scale

If we can estimate the scale of an object, we can
normalise it to achieve scale invariance:

0.75 1 1.25

Normalisation Zoom by 1.33 Zoom by 1

Animal
classifier "Dog"

Zoom by 0.8

Input to animal
classifier

Dog Dog Dog

Input images

Very
valuable

Prediction

For a feature to be capable of predicting scale, it must itself
behave differently at different scales (i.e. it must not be
invariant).

Scale is difficult to infer from corners
Observation

Corners and edges are useful for identifying points of
interest, but they have a significant shortcoming:

It is difficult to infer the scale of edges and corners
Image 1 Image 2

Big
kennel

Little
kennel

zoomed in
camera

zoomed
out camera

A delivery robot
with a camera needs
to recognise two
kennels for a dog
food delivery:

Which corner belongs to which kennel?

It is impossible to tell the
scale from the corner image!

References: K. Mikolajczyk and C. Schmid. "Indexing based on scale invariant interest points." ICCV 2001; The corner-to-edges figure is based on a figure from Rob Fergus.
Excellent resource for further reading: Szeliski, Richard. "Computer Vision: Algorithms and Applications." 2nd Edition (2021).

Sometimes yes

In practice....

It has been observed empirically that Harris corners alone do
not reliably predict scale (Mikolajczyk and Schmid, 2001)

Sometimes no

Inferring scale

Do corners behave differently at different scales?

A corner at
one scale

...becomes
edges at
another
scale!

Zoom in

Blobs
Motivation

We'd like a feature that can be used to reliably predict
scale. Blobs can help!

What is a blob?

A blob is an area of uniform/similar intensity in the image

While edges and corners are features which are found
at discontinuities, blobs are localised in the middle of
areas of similar intensity which are surrounded by pixels
of a different intensity on their boundaries

Blobs

Detecting blobs

Blobs can be detected with the Laplacian of Gaussian filter

Despite a noisy signal, the minima of the response from the scale-
normalised Laplacian of Gaussian at the correct scale, , localise
the centres of bright blobs on a dark background perfectly

Dark blobs on a bright background produce maxima

σ

⊛ =

1D line scan

Responseminimumminimumminimum

LoG filter

σ = 20

Reference: T. Lindeberg. "Detecting salient blob-like image structures and their scales with a
scale-space primal sketch: A method for focus-of-attention." IJCV, 1993

Response

Blob centres and band-pass filtering
Why does the Laplacian of Gaussian filter give a strong negative response at the centre of a bright blob
on a dark background (for the appropriate value of)?

To build intuition, we can apply a Laplacian of Gaussian with to a box function of different widths

σ

σ = 1

The role of σ

Figure credits: Svetlana Lazebnik

Input signal

"Ripples" with zero-crossings at
the position of edges (we saw
this earlier for edge detection)

Convolve with LoG filter ()σ = 1

Input signal

ripples get closer...

Convolve with LoG filter ()σ = 1

Response

Input signal

And closer...

Convolve with LoG filter ()σ = 1

Response

Input signal

Convolve with LoG filter ()σ = 1

Response

When the scales match, we get
superposition of the ripples to
give a strong negative response.

Blobs and band-pass filtering: example
The size of the blob detected depends on the value of the LoG filter used

As sigma is increased, larger and larger image features are detected, ranging from small boxes to entire buildings

σ

Each time the blob detector will fire on the centre of the blob in question, making it ideal for extracting texture from the
inside of an object or for fixing location of an object in the scene

The role of σ

Input image

Response

Convolve with LoG filter ()σ = 1 Convolve with LoG filter ()σ = 3 Convolve with LoG filter ()σ = 7 Convolve with LoG filter ()σ = 10Filter operation

Responds to small structures Responds to large structures

Blobs and scales
Responses at different scales

Blobs have a range of scales over which
they will be detected

The (scale-normalised) Laplacian of a
Gaussian as recorded at a particular
location is a smooth function over scale,
with definite peaks or troughs

These maxima and minima occur at the
centre of blobs

These are considered ideal places to
examine the surroundings of the feature
point for use in feature description

Examples

Convolve with
LoG filter ()σ = 5

Response at the
smallest blob

Input image

Convolve with
LoG filter ()σ = 10

Convolve with
LoG filter ()σ = 20

Convolve with
LoG filter ()σ = 40

Convolve with LoG
filter ()σ = 80

Response at next
larger blob

Response at next
larger blob

Response at next
larger blob

Response at
largest blob

Key takeaway: different values can identify blobs at different scalesσ

A technical detail: the scale-normalised LoG filter

When detecting blobs, we use a scale-normalised LoG
filter - what does this mean and why is it needed?

The response of a derivative of Gaussian filter to a
perfect step edge decreases as increasesσ

Why do we need to "scale-normalise" the LoG?

Slide content credits: Svetlana Lazebnik

To produce the same response across different values
we must multiply the Gaussian derivative by

Since the Laplacian is the second derivative of the
Gaussian, it must be multiplied by to scale-normalise:

σ
σ

σ2

When the filter hits the edge,
the response is the integral

of the left peak
1

σ 2π

VisualisationInput signal

Box function
with radius 8

Convolve with unnormalised LoG

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Oh dear, the minimum
is barely visible.

This will make it hard
to select the

scale!
σ = 8

Convolve with scale-normalised LoG

∇2
normG = σ2 ∇G

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Clear winner! We call the characteristic scaleσ

Selecting the characteristic scale
Core idea

Different scales are ideal for interest points
of different sizes

The ideal scale for a keypoint (the
characteristic scale1) is the scale
corresponding to the maximum of the
detector response at that point.

E.g., with a blob, we want to find maximum
of the magnitude of the scale-normalised
Laplacian of a Gaussian over scale

The image location of this local max
response gives the blob centre position
whilst the scale, , defines its sizeσ

Scale space motivationInput image
Suppose we want to find

the scale of this blob

Convolve with scale-normalised
LoG filter for different valuesσ

(Scale 1) σ = 1 (Scale 2) σ = 7 (Scale 3) σ = 12 (Scale 4) σ = 18

Scale-normalised LoG response at red dot We see a clear maximum near
scale 3 ()σ = 12

Note: this function is continuous.
To find the exact point and scale
of the blob, a set of discrete
scales are sampled (via an Image
Pyramid) and the maximum is
found by interpolation

Reference: 1(terminology for characteristic scale) T. Lindeberg, Feature detection with automatic scale selection. International journal of computer vision, 1998

Using scale space to achieve scale invariance
Achieving scale invariance

We can achieve scale invariance by accurately
estimating the scale of a structure, then
normalising

We obtain scale invariance by looking at the
different resolutions (low-pass filtered at
different scales) of an image, and selecting the
scale that gives the strongest response

There are an infinite number of possible
resolutions for any image, which together form a
three-dimensional function of intensity over
location and scale

This is what is technically known as the scale
space of the image, denoted S(x, y, σ)

Computing the scale spaceWe can calculate by convolving the
original image with Gaussians of different
scales, , thus the scale space function can be
written as:

where

It is impractical to examine all possible resolutions
(and impossible to do so when we are restricted by
digital image representation)

Thus, we sample the space by choosing particular
resolutions to examine

Does blurring need to be Gaussian? Yes! Other
kernels can introduce new artefacts at coarser
scales1

S(x, y, σ)
I(x, y)

σ

S(x, y, σ) = G(x, y, σ) ⊛ I(x, y)

G(x, y, σ) = 1
2πσ2 e−(x+y)2/2σ2

Samples from scale space
 at discrete values of S(x, y, σ) σ

Increasing
σ

Reference: 1J. J. Koenderink, "The structure of images". Biological cybernetics, 1984

Trick 2: image pyramids

Blurring smaller images is cheaper
because:

Recall: our image sampling rate should be
(the Nyquist rate) to accurately capture the signal (avoid aliasing)

Each time the scale doubles (i.e. one full octave) in scale space, the
blurring (a low-pass filter) has removed sufficient high frequency
information that we can subsample the image by a factor of 2
without losing information!

≥ 2 × highest frequency

Scale space: computational tricks
Challenge

Computing the full scale space of an image would be
extremely expensive:

•Expensive in computation (many convolutions)

•Expensive in memory (many blurred images to store)

Trick 1: sparse sampling

We produce a discrete set of low-pass filtered images by
smoothing with gaussians with a scale satisfying

so that it doubles after intervals1 (each doubling is referred to as
an octave). The images in each octave are spaced
logarithmically with the scale of neighbouring images satisfying

σi = 2 i
sσ0

s
s

σi+i = 21
s σi

Reference: 1(justification for logarithmic spacing) L. M. J. Florack, et al. "Scale and the differential structure of images." Image and vision computing, 1992NE

Each layer of the pyramid
corresponds to one octave.

Example image pyramid with four octaves, s = 3

Downsample by factor of 2

Downsample by factor of 2

Downsample by factor of 2

2. We avoid the use of very large kernels
to compute responses at large scales

1. We process fewer pixels

Scale space: more computational tricks
Trick 3: incremental blurs

Even within octaves, blurring with larger Gaussian kernels is expensive. How can avoid these costly convolutions?

The reproducing property of the Gaussian comes to the rescue:

Given , where , we want to compute , where

From the reproducing property, we know that for some value of which we can solve for

G(σ1) ⊛ G(σ2) = G(σ2
1 + σ2

2)
S(x, y, σi) σi = 2 i

sσ0 S(x, y, σi+1) σi+1 = 21
s σi

G(σi+1) = G(σi) ⊛ G(σki
) σki

 (reproducing property)

 (by definition)

σki
= σ2

i+1 − σ2
i

σi+1 = 21
s σi

σki
= 22

s σ2
i − σ2

i = σi 22
s − 1

Find incremental blur size

This gives distinct and small incremental
Gaussian (low-pass) filters, , need only be
computed once!

They can be reused in each subsequent octave
but on sub-sampled images to achieve the
larger scales

s
σki

No large convolutions required!

Scale space: yet more computational tricks

Trick 4: DoG

The Difference of Gaussians filter (or "DoG" as
it is often called), is also a blob detector

Blobs are found from the minima and maxima
of the DoG response over an image

It takes its name from the fact that it is
calculated as the difference of two Gaussians,
which approximates the scale-normalised
Laplacian of a Gaussian

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2 ∇2G(x, y, σ)

Comparing the blue and magenta lines, we can
see it's a pretty good approximation!

The DoG approximation

In a system which uses a scale space pyramid, DoG points are very
useful entities, as a response can be computed simply subtracting one
member of a pyramid level from the one directly above it!

Putting it together: efficient scale-invariant keypoint detection

Keypoint locations (the blob centres) are found by first
computing an approximation for the Laplacian of the
Gaussian pyramid by using Difference of Gaussians

This is done efficiently by subtracting neighbouring images of
same dimension in the Image Pyramid1

A local search of 26 neighbour responses is required to
determine if a pixel is a blob-centre and to find the scale

The location of the local maximum/minimum of DoG
response (in image position and over scale) gives the
keypoint location and characteristic scale

Reference: 1 Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)

The DoG pyramid

Finding keypoints efficiently across scales Finding local extrema

Summary

DoG pyramid allows us to estimate the position and scale
of keypoints efficiently

We will see how we can use the estimated scale to
perform scale normalisation to achieve scale
invariance

