
Recap of last lecture

•How to represent images as matrices 

•Nuisance factors in pixel intensity data 

•Data reduction in computer vision and Marr's hierarchy 

•Image structures: featureless regions, edges and corners 

•Edge detection in 1D (and how to do it quickly) 

•Edge detection in 2D (and how to do it quickly) 

•Implementation details (truncated summations; convolution)

Summary

NE Tag = Non Examinable

VE Tag = Very Examinable



The Aperture Problem

Image credits: "Animated Example of the Aperture Problem", Bas Rokers. https://en.wikipedia.org/wiki/Motion_perception#/media/File:Aperture_problem_animated.gif

The problem with edges

Suppose you are asked to look down 
through an opening and observe a 
grate moving below you  
Which way is the grate moving?

Down and to the right? Straight 
down? Only to the right? 

It is impossible to tell!

Can only measure motion normal to the edge

Edges are a powerful intermediate 
representation but they are sometimes 
insufficient 

This is especially the case when image 
motion is being analysed  

The motion of an edge is rendered 
ambiguous by the aperture problem: 
when viewing a moving edge, it is only 
possible to measure the motion normal 
to the edge locally 

Corners to the rescue

To measure image motion 
in 2D completely, we can 
look at corner features

We saw earlier that a 
corner is characterised by 
an intensity discontinuity in 
two directions (this 
discontinuity can be 
detected using correlation) 
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Cross-correlation - another important operator
Normalised cross-correlation

Normalised cross-correlation measures how well an image patch  matches 
portions of an image, , that share the same size as the patch 
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Note: cross-correlation is normalised to  by computing it from the covariance and 
variances of the two signals/patches (adds robustness to illumination changes)
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Visualisation

1 0 2 0

1 0 0 1I(x, y)

1 0 1 0

P(u, v)

1 0

1 0

c(x, y)
1 −0.6 0.3

1 −0.6 0

If we multiply numerator & denominator of  by  we can interpret terms as 
covariance, variance of the patch and variance of the image under patch

c(x, y) 1/n2

It entails sliding the patch over the image, computing the sum of the products of the 
pixels and normalising the result: 

1 0

1 0

no flipping!

(to 1 decimal 
place)

Note: software often pads 
edges of  with zeros so 
that  is same shape as 
(unpadded) 

I(x, y)
c(x, y)

I(x, y)

Examples of 
paired pixels



Cross-correlation - corners
cross-correlation peaks at corners

A patch with a well-defined peak in its autocorrelation (self cross-correlation) function can be classified as a "corner"

Auto-correlation with featureless 
patch
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Featureless

Auto-correlation with an edge 
patch

P

I(x, y) c(x, y)

Edge

Auto-correlation with a corner 
patch

P

I(x, y) c(x, y)

Corner

No clear peak in c(x, y) Produces ridge in c(x, y) Produces clear peak in !c(x, y)

peak



Sum of squared differences and cross-correlation

The sum-of-squared-differences (SSD), or squared Euclidean distance, 
is a popular metric for comparing patch similarity 

It is computed between a patch  containing  
pixels, and another of the same size in an image  via: 

  

The (unnormalised) cross-correlation (simpler variant) is given by: 

 

If we expand the expression for , we obtain: 
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Definitions The link 
To see the link, note that: 

1. The first patch term in , , is 
constant w.r.t  

2. In natural images pixel values often vary 
smoothly so we can approximate last term 
in , , by a constant 
(when summing over , this term will have 
significant overlap for neighbouring ) 

With these observations, we have that: 

 

Thus, we see that greater cross-correlation 
implies greater similarity (a smaller distance) 
under the  metric

SSD(x, y) P(u, v)2

x, y

SSD(x, y) I(x + u, y + v)2

u, v
x, y

SSD(x, y) ≈ − 2 ⋅ UCC(x, y) + constant

SSDconstant approx. constant

Useful reference: http://www.cse.yorku.ca/~kosta/CompVis_Notes/ssd_cross-correlation.pdf



Suppose animal classifier works at one scale

The importance of scale invariance
Our dream: invariance

Dog Dog Wolf

To work in the real world, we want our models to be 
invariant to certain properties of objects 

Example: Invariance to scale in object recognition: if our 
model gives the same output for different scales of input, it 
is said to be "scale invariant"

How to achieve invariance?

Prediction

zoom x1.25zoom x1zoom x0.75

Invariant across 
these scales

Not invariant 
across these scales

We want to be able to recognise tigers while they are still in 
the distance as well as close up...

zoom x1.25zoom x1zoom x0.75

Estimated scale

If we can estimate the scale of an object, we can 
normalise it to achieve scale invariance:

0.75 1 1.25

Normalisation Zoom by 1.33 Zoom by 1

Animal 
classifier "Dog"

Zoom by 0.8

Input to animal 
classifier

Dog Dog Dog

Input images

Very 
valuable

Prediction



For a feature to be capable of predicting scale, it must itself 
behave differently at different scales (i.e. it must not be 
invariant).

Scale is difficult to infer from corners
Observation

Corners and edges are useful for identifying points of 
interest, but they have a significant shortcoming: 

It is difficult to infer the scale of edges and corners
Image 1 Image 2

Big 
kennel

Little 
kennel

zoomed in 
camera

zoomed 
out camera

A delivery robot 
with a camera needs 
to recognise two 
kennels for a dog 
food delivery:

Which corner belongs to which kennel?

It is impossible to tell the 
scale from the corner image!

References: K. Mikolajczyk and C. Schmid. "Indexing based on scale invariant interest points." ICCV 2001; The corner-to-edges figure is based on a figure from Rob Fergus. 
Excellent resource for further reading: Szeliski, Richard. "Computer Vision: Algorithms and Applications." 2nd Edition (2021).

Sometimes yes

In practice....

It has been observed empirically that Harris corners alone do 
not reliably predict scale (Mikolajczyk and Schmid, 2001)

Sometimes no

Inferring scale

Do corners behave differently at different scales?

A corner at 
one scale

...becomes 
edges at 
another 
scale!

Zoom in



Blobs
Motivation

We'd like a feature that can be used to reliably predict 
scale. Blobs can help!

What is a blob?

A blob is an area of uniform/similar intensity in the image

While edges and corners are features which are found 
at discontinuities, blobs are localised in the middle of 
areas of similar intensity which are surrounded by pixels 
of a different intensity on their boundaries

Blobs

Detecting blobs

Blobs can be detected with the Laplacian of Gaussian filter

Despite a noisy signal, the minima of the response from the scale-
normalised Laplacian of Gaussian at the correct scale, , localise 
the centres of bright blobs on a dark background perfectly 

Dark blobs on a bright background produce maxima

σ

⊛ =

1D line scan

Responseminimumminimumminimum

LoG filter

σ = 20

Reference: T. Lindeberg. "Detecting salient blob-like image structures and their scales with a 
scale-space primal sketch: A method for focus-of-attention." IJCV, 1993



Response

Blob centres and band-pass filtering
Why does the Laplacian of Gaussian filter give a strong negative response at the centre of a bright blob 
on a dark background (for the appropriate value of )? 

To build intuition, we can apply a Laplacian of Gaussian with  to a box function of different widths

σ

σ = 1

The role of σ

Figure credits: Svetlana Lazebnik

Input signal

"Ripples" with zero-crossings at 
the position of edges (we saw 
this earlier for edge detection)

Convolve with LoG filter ( )σ = 1

Input signal

ripples get closer...

Convolve with LoG filter ( )σ = 1

Response

Input signal

And closer...

Convolve with LoG filter ( )σ = 1

Response

Input signal

Convolve with LoG filter ( )σ = 1

Response

When the scales match, we get 
superposition of the ripples to 
give a strong negative response.



Blobs and band-pass filtering: example
The size of the blob detected depends on the  value of the LoG filter used  

As sigma is increased, larger and larger image features are detected, ranging from small boxes to entire buildings

σ

Each time the blob detector will fire on the centre of the blob in question, making it ideal for extracting texture from the 
inside of an object or for fixing location of an object in the scene

The role of σ

Input image

Response

Convolve with LoG filter ( )σ = 1 Convolve with LoG filter ( )σ = 3 Convolve with LoG filter ( )σ = 7 Convolve with LoG filter ( )σ = 10Filter operation

Responds to small structures Responds to large structures



Blobs and scales
Responses at different scales

Blobs have a range of scales over which 
they will be detected 

The (scale-normalised) Laplacian of a 
Gaussian as recorded at a particular 
location is a smooth function over scale, 
with definite peaks or troughs 

These maxima and minima occur at the 
centre of blobs  

These are considered ideal places to 
examine the surroundings of the feature 
point for use in feature description  

Examples

Convolve with 
LoG filter ( )σ = 5

Response at the 
smallest blob

Input image

Convolve with 
LoG filter ( )σ = 10

Convolve with 
LoG filter ( )σ = 20

Convolve with 
LoG filter ( )σ = 40

Convolve with LoG 
filter ( )σ = 80

Response at next 
larger blob

Response at next 
larger blob

Response at next 
larger blob

Response at 
largest blob

Key takeaway: different  values can identify blobs at different scalesσ



A technical detail: the scale-normalised LoG filter

When detecting blobs, we use a scale-normalised LoG 
filter - what does this mean and why is it needed? 

The response of a derivative of Gaussian filter to a 
perfect step edge decreases as  increasesσ

Why do we need to "scale-normalise" the LoG?

Slide content credits: Svetlana Lazebnik

To produce the same response across different  values 
we must multiply the Gaussian derivative by  

Since the Laplacian is the second derivative of the 
Gaussian, it must be multiplied by  to scale-normalise:

σ
σ

σ2

When the filter hits the edge, 
the response is the integral 

of the left peak
1

σ 2π

VisualisationInput signal

Box function 
with radius 8

Convolve with unnormalised LoG

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Oh dear, the minimum 
is barely visible. 

This will make it hard 
to select the  

scale!
σ = 8

Convolve with scale-normalised LoG

∇2
normG = σ2 ∇G

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Clear winner! We call  the characteristic scaleσ



Selecting the characteristic scale
Core idea

Different scales are ideal for interest points 
of different sizes 

The ideal scale for a keypoint (the 
characteristic scale1) is the scale 
corresponding to the maximum of the 
detector response at that point.  

E.g., with a blob, we want to find maximum 
of the magnitude of the scale-normalised 
Laplacian of a Gaussian over scale 

The image location of this local max 
response gives the blob centre position 
whilst the scale, , defines its sizeσ

Scale space motivationInput image
Suppose we want to find 

the scale of this blob

Convolve with scale-normalised 
LoG filter for different  valuesσ

(Scale 1) σ = 1 (Scale 2) σ = 7 (Scale 3) σ = 12 (Scale 4) σ = 18

Scale-normalised LoG response at red dot We see a clear maximum near 
scale 3 ( )σ = 12

Note: this function is continuous. 
To find the exact point and scale 
of the blob, a set of discrete 
scales are sampled (via an Image 
Pyramid) and the maximum is 
found by interpolation

Reference: 1(terminology for characteristic scale) T. Lindeberg, Feature detection with automatic scale selection. International journal of computer vision, 1998



Using scale space to achieve scale invariance
Achieving scale invariance

We can achieve scale invariance by accurately 
estimating the scale of a structure, then 
normalising  

We obtain scale invariance by looking at the 
different resolutions (low-pass filtered at 
different scales) of an image, and selecting the 
scale that gives the strongest response 

There are an infinite number of possible 
resolutions for any image, which together form a 
three-dimensional function of intensity over 
location and scale 

This is what is technically known as the scale 
space of the image, denoted S(x, y, σ)

Computing the scale spaceWe can calculate  by convolving the 
original image  with Gaussians of different  
scales, , thus the scale space function can be 
written as: 

 

where  

It is impractical to examine all possible resolutions 
(and impossible to do so when we are restricted by 
digital image representation)  

Thus, we sample the space by choosing particular 
resolutions to examine 

Does blurring need to be Gaussian? Yes! Other 
kernels can introduce new artefacts at coarser 
scales1 

S(x, y, σ)
I(x, y)

σ

S(x, y, σ) = G(x, y, σ) ⊛ I(x, y)

G(x, y, σ) = 1
2πσ2 e−(x+y)2/2σ2

Samples from scale space 
 at discrete values of S(x, y, σ) σ

Increasing 
σ

Reference: 1J. J. Koenderink, "The structure of images". Biological cybernetics, 1984



Trick 2: image pyramids

Blurring smaller images is cheaper 
because:

Recall: our image sampling rate should be  
(the Nyquist rate) to accurately capture the signal (avoid aliasing)  

Each time the scale doubles (i.e. one full octave) in scale space, the 
blurring (a low-pass filter) has removed sufficient high frequency 
information that we can subsample the image by a factor of 2 
without losing information!

≥ 2 × highest frequency

Scale space: computational tricks
Challenge

Computing the full scale space of an image would be 
extremely expensive: 

•Expensive in computation (many convolutions) 

•Expensive in memory (many blurred images to store) 

Trick 1: sparse sampling

We produce a discrete set of low-pass filtered images by 
smoothing with gaussians with a scale satisfying 

  

so that it doubles after  intervals1 (each doubling is referred to as 
an octave). The  images in each octave are spaced 
logarithmically with the scale of neighbouring images satisfying 

σi = 2 i
sσ0

s
s

σi+i = 21
s σi

Reference: 1(justification for logarithmic spacing       ) L. M. J. Florack, et al. "Scale and the differential structure of images." Image and vision computing, 1992NE

Each layer of the pyramid 
corresponds to one octave. 

Example image pyramid with four octaves, s = 3

Downsample by factor of 2

Downsample by factor of 2

Downsample by factor of 2

2. We avoid the use of very large kernels 
to compute responses at large scales

1. We process fewer pixels



Scale space: more computational tricks
Trick 3: incremental blurs

Even within octaves, blurring with larger Gaussian kernels is expensive. How can avoid these costly convolutions? 

The reproducing property of the Gaussian comes to the rescue: 

 

Given , where , we want to compute , where  

From the reproducing property, we know that  for some value of  which we can solve for

G(σ1) ⊛ G(σ2) = G( σ2
1 + σ2

2 )
S(x, y, σi) σi = 2 i

sσ0 S(x, y, σi+1) σi+1 = 21
s σi

G(σi+1) = G(σi) ⊛ G(σki
) σki

 (reproducing property)   

 (by definition) 

σki
= σ2

i+1 − σ2
i

σi+1 = 21
s σi

σki
= 22

s σ2
i − σ2

i = σi 22
s − 1

Find incremental blur size

This gives  distinct and small incremental 
Gaussian (low-pass) filters, , need only be 
computed once! 

They can be reused in each subsequent octave 
but on sub-sampled images to achieve the 
larger scales 

s
σki

No large convolutions required!



Scale space: yet more computational tricks

Trick 4: DoG

The Difference of Gaussians filter (or "DoG" as 
it is often called), is also a blob detector 

Blobs are found from the minima and maxima 
of the DoG response over an image  

It takes its name from the fact that it is 
calculated as the difference of two Gaussians, 
which approximates the scale-normalised 
Laplacian of a Gaussian  

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2 ∇2G(x, y, σ)

Comparing the blue and magenta lines, we can 
see it's a pretty good approximation!

The DoG approximation

In a system which uses a scale space pyramid, DoG points are very 
useful entities, as a response can be computed simply subtracting one 
member of a pyramid level from the one directly above it!



Putting it together: efficient scale-invariant keypoint detection

Keypoint locations (the blob centres) are found by first 
computing an approximation for the Laplacian of the 
Gaussian pyramid by using Difference of Gaussians  

This is done efficiently by subtracting neighbouring images of 
same dimension in the Image Pyramid1

A local search of 26 neighbour responses is required to 
determine if a pixel is a blob-centre and to find the scale

The location of the local maximum/minimum of DoG 
response (in image position and over scale) gives the 
keypoint location and characteristic scale

Reference: 1 Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)

The DoG pyramid

Finding keypoints efficiently across scales Finding local extrema

Summary

DoG pyramid allows us to estimate the position and scale 
of keypoints efficiently 

We will see how we can use the estimated scale to 
perform scale normalisation to achieve scale 
invariance


