Deep Learning 4

Lecture 15: Neural Network Design, Scaling Laws and Transformers
4F12: Computer Vision

Instructor: Samuel Albanie



Outline for final lectures

Outline

For the last two lectures, we will focus on:

e Strategies for Neural Network Design This lecture

® Scaling phenomena

¢ Transformers

e Self-supervised learning Next lecture

* Pseudo-labelling

Qualitatively, these lectures:
® Are more research focused

® Prioritise breadth over depth




Strategies for Neural Network Design

Background

Modern deep learning stems from the connectionist approach, in which the wiring of computational networks plays an important role
in building intelligent machines.

Conceptually, it can be helpful to categorise the structures that define the wiring between neural network units into two categories:
e Network architecture - connections between units that are (typically) fixed throughout training (e.g. operation types)
o - connections between units that are updated during training (e.g. kernel weights learned via backpropagation)

Neural Network Design focuses principally on the finding good network architectures (although the distinction between the
architecture and the parameters can be somewhat blurry).

We exist (probably) in a resource-limited environment. We have limited supplies of:

For any given task, neural network design aims to produce architectures with:
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Fodor and Pylyshyn. "Connectionism and cognitive architecture: A critical analysis." Cognition 28.1-2 (1988): 3-71
Rumelhart, Hinton and McClelland, (1986). A general framework for parallel distributed processing. PDP: Explorations in the microstructure of cognition, 1(45-76), 26.



Strategy 1: Neural Network Design by Hand

S

Convolutions

GLLLLEL LT ]

-
VA=

< e s amanamssmnnannnns

contrast

> recognition
extraction 9

extraction layer|

Fukushima and Miyake, LeCun et al.,
Neocognitron, 1982 LeNet, 1998

ILSVRC14 3x3 convs

A

weight layer
l relu
: X
weight layer identity

Simonyan and Zisserman,

VGGNets, 2015

He et al.,
ResNet, 2016

fﬂ

T SR
BfS AN

Krizhevsky et al.,
AlexNet, 2012

Huang et al.,
DenseNets, 2017

Szegedy et al.,
Inception, 2015

SE Blocks

| (W)
F_/(-)v (I ———— T
1x1xC 1x1xC \
F.s‘('u/e )

w

Hu et al.,
SENets, 2018

Aside: several of these architectures rose to prominence through strong performance on the ImageNet ILSYRC competition.

References:
Fukushima and Miayke. "Neocognitron" CCNN, 1982

LeCun, Y. et al. (1998). Gradient-based learning applied to document recognition. IEEE
Krizhevsky, A et al. "Imagenet classification with deep CNNs.” NeurlPS. 2012.

Szegedy, C et al. (2015). Going deeper with convolutions. CYPR

Simonyan et al., (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR
He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

Huang, Gao, et al. "Densely connected convolutional networks."CVPR 2017.
Hu et al. “Squeeze-and-Excitation Networks.” CVPR 2018

Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge.” 1JCV 2015




Strategy 2: Random Wiring
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FIG. 2 — Organization of a perceptron.

: ] ] Xie et al., Exploring Randomly
Turing, A-type/B-type Rosenblatt, The Perceptron, Wired Neural Networks for Image

Unorganised machines, 1948 MARK I, 1957 Recognition, 2019

References:

Waits and Strogatz. “Collective dynamics of ‘small-world’ networks.” Nature 393 (1998): 440-442.
Turing, A. M. (1948). Intelligent machinery.

(Figure) Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para. Cornell

Aeronautical Laboratory.
Xie, Saining, et al. "Exploring randomly wired neural networks for image recognition." CVPR. 2019.

Girshick, (2019) https://neuralarchitects.org/slides/girshick-slides.pdf

Method: Randomly sample connections between nodes
Different random graphs (e.g. Watts-Strogatz) produce
different architecture characteristics



https://neuralarchitects.org/slides/girshick-slides.pdf

Strategy 3: Evolutionary Algorithms

GeNet on MNIST
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Miller et al., Stanley and Miikkulainen, Xie and VYuille, Real et al. Large-Scale Evolution of
“INNERVATOR”, 1989 NEAT, 2002 Genetic CNN, 2017 Image Classifiers, 2017

Evolutionary Algorithms for Network Architectures References:

Figure sourced from Evolutionary Design of Neural Architectures - A Preliminary Taxonomy and Guide
Decoding to Literature, Balakrishnan et al., 1995

Offspring / Trained ANN Rechenberg | (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment
J. Holland, Adaptation in natural and artificial systems, 1975

Genotype Phenotype P. M Todd. Evolutionary methods for connectionist architectures. Unpublished manuscript, 1988.
Miller et al. Designing neural networks using genetic algorithms. In ICGA, 1989.

Stanley et al. (2002). Evolving neural networks through augmenting topologies. Evolutionary

Selection ANN Training computation.

Mutation Fithess Evaluation Label
Recombination Bayer, Justin, et al. "Evolving memory cell structures for sequence learning." ICANN, 2009.

Xie, Lingxi and Alan Loddon Yuille. “Genetic CNN.” ICCV 2017

Evolutionary Component

, R. Jozefowicz, et al.. "An empirical exploration of recurrent network architectures." ICML. 2015.
Balakrishnan et al., 1995 Learning Component

Real, Esteban, et al. "Large-scale evolution of image classifiers." ICML 2017




Strategy 4: Neural Architecture Search

IT.I
Y

- F
!

(b) Expected improvement under varying hyperparameters (b) Expected imp

\,\/\m M Important parameter

(C) Integrated expected improvement (C) Expected improvement across fantasies

Unimportant parameter

Snoek et al., Practical Bayesian Bergstra and Bengio, Random Zoph and Le, Neural architecture Liv et al. DARTS: Differentiable

Optimization of Machine Learning search for hyper-parameter search with reinforcement learning, Architecture Search. 2019
Algorithms, 2012 optimization, 2012 2017 ’

References:

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical bayesian optimization of machine
learning algorithms." Advances in neural information processing systems. 2012.

Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." JMLR (2012)

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

Baker, Bowen, et al. "Accelerating neural architecture search using performance prediction." arXiv

preprint arXiv:1705.10823 (2017).

Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." ICLR 2019




DARTS: Differentiable Architecture Search

Challenge: architecture search is non-differentiable Bilevel Optimisation

Problem: Network performance (e.g. accuracy) does not change smoothly Each node can be computed from predecessors:
w.r.t architecture changes

(J) — (@) (1 (D)
xV= ¥ 0" (x
- we cannot use gradient-based optimisation :( Z ()

i<j
Network Cell

Relaxation: Consider mixtures of candidate operations, 0, via:

@)
5D () = Z exp(a, ) o(x)

) D exp(ay”)

0

The goal is then to learn a = {a/}.

let &£, ., and &, ; denote training/validation loss.

Let w the denote network parameters (e.g. convolution weights).

We'd like to solve a bilevel optimisation problem:

min &, ,(w*(a), a) a is the upper-level variable
:
? =

etc. s..t. wH(a) = Grgminwfztmm(w, ) wis the lower-level variable

DARTS solution: solve a of the problem. To learn a cell: Evaluating architecture gradients is prohibitively slow (the inner loop
* Place a mixture (weighted sum) of operations on each edge requires training a network) so we use an approximation:
* Jointly optimise network parameters and mixture probabilities
* ~ — ¢V -
¢ Induce final architecture from mixing probabilities VoZyaWHa), ) &V, 2L, (w =V, Ly, (W, @), a)

No formal convergence guarantees, but works in practice...

Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." ICLR 2019



Scaling phenomena and the

1 petaflop-day is approx.

8 V100 GPUs running for 1 day

Two Distinct Eras of Compute Usage in Training AI Systems
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Translation

AlexNet

Deep Belief Nets and
layer-wise pretraining

TD-Gammon v2.1
BiLSTM for Speech

LeNet-5

NETtalk RNN for Speech
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2-year doubling (Moore's Law)

< First Era

Amodei and Hernandez, Al and Compute, 2018
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ResNets

3.4-month doubling

DQN

Modern Era =

role of hardware

GPT-3 (175B parameters)

reportedly trained on a server
with several thousand GPUs

Megatron-Turing NLG 530B
(Nov, 2021) trained on 4K
A100 GPUs




Effective compute ~ FLOPs
required to reach AlexNet-
level ImageNet
performance

Estimated cost of cloud
compute for models like

GPT-3: O(10 Million) USD

Hernandez and Brown, "Measuring the Algorithmic Efficiency of Neural Networks.” arXiv preprint arXiv:2005.04305 (2020).

Growth in Effective Compute

101

b b = (- b
(- o o o o
W F oy w (o)) ~J

(-
-
N

2013 2014 2015 2016 2017 2018

hitps://twitter.com/eturner303/status/1266264358771757057

What factors are enabling effective compute scaling?

Algorithms
(conservative)

Compute



Scaling phenomena and the role of hardware

How important is scale for Deep Neural Networks?

s it "just engineering", or something more fundamental?

Note: It is often challenging to analyse shifts from quantitative to qualitative differentiation.

Hierarchy of sciences

Is cell biology "just" applied molecular biology? Qualitative vs Quantitative

Is molecular biology "just" applied chemistry? . .
Is chemistry "just" applied many-body physics? FITZGERALD: The rich are different from us.
HEMINGWAY: Yes, they have more money.

One science obeys the laws of the other.
But at each stage, new laws and concepts are necessary.

“In almost all fields, a factor of ten means . If you
increase magnification by a factor of 10 in Biology, you will see new things.”

Hamming, Art of doing science and engineering, 1997
References/Footnotes:
P. Anderson, “More is different.” Science 177 4047 (1972): 393-6

The "wisecrack" of Hemingway appears as a comment made by a character in one of his novels (http://www.quotecounterquote.com/2009/11 /rich-are-different-famous-quote.html)
R. Haomming “The Art of Doing Science and Engineering: Learning to Learn.” (1997)



http://www.quotecounterquote.com/2009/11/rich-are-different-famous-quote.html

The Transformer:
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Note: Unlike recurrent networks, transformers are

amenable to parallelisation.

a model that scales particularly well...
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Positional Encoding

By default queries and keys have no
information about sequence position
Solution - add a code for position:

. pos pos
PE 5501 = sm< o > PE(pos i1y = COS( 20
10000 @m 10000 4m

)

Unique code at each position

Scaled Dot-Product Attention

Intuition: The humble Python dictionary

subject_quality = {

“computer_vision": 10, RYCIEEYNAY)

"everything_else": 3,

} ]

print(subject_quality["computer_vision"]) # 10

print(subject_quality["machine_learning"]) # ?

# raises KeyValueError :(

But suppose we had a similarity function, sim(), that told

us how similar the query is to each key.

sim("machine_learning", "computer_vision") = 0.8
sim("machine_learning", "everything_else") = 0.2

machine_learning_quality = 0.8 * 10 + 0.2 *x 3 =

Ensures similarities sum to 1
MatMul \

4 1 : B

SofiViax Attention(0, K, V) = softmax
1

Mask (opt.)
1

Scale

t . . .
Math/d Masking is optionally applied to control

which keys the query is compared to

Vaswani et al. “Attention is All you Need”, NeurlPS 2017
The Annotated Transformer, hitps://nlp.seas.harvard.edu/2018/04/03/attention.html



https://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformer scaling laws for natural language

Predictable scaling

Transformer performance on Intriguing characteristics

language modelling tasks scales
predictably as a with:
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Larger models require fewer samples If extra compute is available, allocate

to reach the same performance. most towards increasing the model size!
Some power laws were found that

span more than seven orders of
magnitude.

Kaplan et al. “Scaling Laws for Neural Language Models.” ArXiv abs/2001.08361 (2020)



Vision Transformer

Vision Transformer (ViT) Architecture The importance of pre-training scale

ImageNet transfer performance
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Re-purposes the Transformer (encoder) for vision by: Pre-training dataset
e Splitting images into patches, projecting to embeddings 303M images

* [nserting an extra [CLASS] token In lower-data regime, the stronger inductive biases
e Adding on position embeddings (locality, translation invariance) of the CNN works better.

But in the higher-data regime (e.g. JFT-300M), ViT shines.

Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” ICLR 2021



Transformer Explosion

Historical context: non-local means Object Detection: DETR Computational tricks

The "self-attention" operation has long been used in the f , Problem: ?elf-att.enhon.has quadratic
transformer AR — B complexity in the input size (every element

image processing community for de-noising, under the name S g s encoder- A R R
L decoder o EETE Be attends to every other element).

Many solutions have been proposed,

NL[v](i) = Z w(i, Jv(j) including:
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"non-local means":
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However, the broad applicability and value of this (highly ﬁ .
flexible) operation has become clearer in recent years. I -
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Buades et al. “A non-local algorithm for image denoising.” CYPR 2005 Carion et al. “End-to-End Object Detection with Transformers.” ECCV (2020) 'I(':rI;ILiF:-r:Lrs%e,érjf)zs/hzgs%r;%ji?)l;eon;?;(Y]I;h) Sparse

Wang et al. “Non-local Neural Networks.” CVPR 2018 Strudel et al. “Segmenter: Transformer for Semantic Segmentation.” ICCV 2021 Liv ot al. “Swin Transformer: Hierarchical Vision Transformer
Khan et al. “Transformers in Vision: A Survey.” ArXiv abs/2101.01169 (2021) Girdhar et al. “Video Action Transformer Network.” CVPR 2019 : . : v vy
using Shifted Windows.” ICCV 2021



Neural Network Design and Energy Consumption

Deep Neural Networks are Energy Intensive Transformers represent many of the biggest models

Consumption COze (le) W Accelerator Years [ Energy Consumption (MWh) Net CO2e (metric tons)

Air travel, 1 passenger, NY<+SF 1984
Human life, avg, 1 year 11,023 1,287

American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

84 86
I 28
- |

Meena (TPUvV3) T5 (TPUV3) GPT-3 (V100) Gshard-600B Switch
(TPUV3) Transformer
(TPUV3)

Reasons for optimism:

e There are significant opportunities for grid efficiency: training is not time-
sensitive (can be scheduled to maximise peak renewable energy times)

e Fusion is only 30 years away....

Strubell, Emma et al. “Energy and Policy Considerations for Deep Learning in NLP.” ArXiv abs/1906.02243 (2019)
Image credit: hitps://www.desktopbackground.org/wallpaper/white-bear-put-hand-on-head-wild-animal-wallpaper-jpg-492933
Patterson et al. “Carbon Emissions and Large Neural Network Training.” ArXiv abs/2104.10350 (2021)



https://www.desktopbackground.org/wallpaper/white-bear-put-hand-on-head-wild-animal-wallpaper-jpg-492933

End of Lecture 15




