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Outline for final lectures
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For the last two lectures, we will focus on: 

•Strategies for Neural Network Design 

•Scaling phenomena 

•Transformers 

•Self-supervised learning 

•Pseudo-labelling

Outline

This lecture

Next lecture

Qualitatively, these lectures: 

•Are more research focused 

•Prioritise breadth over depth



Strategies for Neural Network Design

Fodor and Pylyshyn. "Connectionism and cognitive architecture: A critical analysis." Cognition 28.1-2 (1988): 3-71 
Rumelhart, Hinton and McClelland, (1986). A general framework for parallel distributed processing. PDP: Explorations in the microstructure of cognition, 1(45-76), 26. 3

Modern deep learning stems from the connectionist approach, in which the wiring of computational networks plays an important role 
in building intelligent machines. 

Conceptually, it can be helpful to categorise the structures that define the wiring between neural network units into two categories: 

•Network architecture - connections between units that are (typically) fixed throughout training (e.g. operation types) 

•Network parameters - connections between units that are updated during training (e.g. kernel weights learned via backpropagation)  

Neural Network Design focuses principally on the finding good network architectures (although the distinction between the 
architecture and the parameters can be somewhat blurry).

Background

We exist (probably) in a resource-limited environment. We have limited supplies of: Goals

Greater task-specific performance (e.g. accuracy) Lower resource burden

For any given task, neural network design aims to produce architectures with:

Energy Computation Memory Time



Krizhevsky et al., 
AlexNet, 2012

Fukushima and Miyake, 
Neocognitron, 1982

LeCun et al., 
LeNet, 1998

Szegedy et al., 
Inception, 2015

Simonyan and Zisserman, 
VGGNets, 2015

He et al., 
ResNet, 2016

Huang et al., 
DenseNets, 2017

References: 
Fukushima and Miayke. "Neocognitron" CCNN, 1982 
LeCun, Y. et al. (1998). Gradient-based learning applied to document recognition. IEEE 
Krizhevsky, A et al. "Imagenet classification with deep CNNs.” NeurIPS. 2012. 
Szegedy, C et al. (2015). Going deeper with convolutions. CVPR

Simonyan et al., (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 
He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016. 
Huang, Gao, et al. "Densely connected convolutional networks."CVPR 2017. 
Hu et al. “Squeeze-and-Excitation Networks.” CVPR 2018 
Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge.” IJCV 2015

Strategy 1: Neural Network Design by Hand

Hu et al., 
SENets, 2018

Convolutions Scale up (with GPUs) Multiscale

3x3 convs Residuals Dense Connections SE Blocks

Aside: several of these architectures rose to prominence through strong performance on the ImageNet ILSVRC competition.

ILSVRC12 ILSVRC14

ILSVRC14 ILSVRC15 ILSVRC17



Turing, A-type/B-type 
Unorganised machines, 1948

Minsky, SNARC, 1951

Method: Randomly sample connections between nodes 
Different random graphs (e.g. Watts-Strogatz) produce 

different architecture characteristics

Rosenblatt, The Perceptron, 
MARK I, 1957

Xie et al., Exploring Randomly 
Wired Neural Networks for Image 

Recognition, 2019

References: 

Watts and Strogatz. “Collective dynamics of ‘small-world’ networks.” Nature 393 (1998): 440-442. 
Turing, A. M. (1948). Intelligent machinery. 
(Figure) Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach. 
Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project Para. Cornell 
Aeronautical Laboratory. 
Xie, Saining, et al. "Exploring randomly wired neural networks for image recognition." CVPR. 2019. 
Girshick, (2019) https://neuralarchitects.org/slides/girshick-slides.pdf

Strategy 2: Random Wiring

Randomly Wired Architectures

https://neuralarchitects.org/slides/girshick-slides.pdf


Miller et al., 
“INNERVATOR”, 1989

Stanley and Miikkulainen, 
NEAT, 2002

Xie and Yuille, 
Genetic CNN, 2017 

Real et al. Large-Scale Evolution of 
Image Classifiers, 2017

References: 

Figure sourced from Evolutionary Design of Neural Architectures -- A Preliminary Taxonomy and Guide 
to Literature, Balakrishnan et al., 1995  

Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment  

J. Holland, Adaptation in natural and artificial systems, 1975 

P. M Todd. Evolutionary methods for connectionist architectures. Unpublished manuscript, 1988.  

Miller et al. Designing neural networks using genetic algorithms. In ICGA, 1989.   

Stanley et al. (2002). Evolving neural networks through augmenting topologies. Evolutionary 
computation. 

Bayer, Justin, et al. "Evolving memory cell structures for sequence learning." ICANN, 2009. 

Xie, Lingxi and Alan Loddon Yuille. “Genetic CNN.” ICCV 2017 

R. Jozefowicz, et al.. "An empirical exploration of recurrent network architectures." ICML. 2015.  

Real, Esteban, et al. "Large-scale evolution of image classifiers." ICML 2017 

Strategy 3: Evolutionary Algorithms

Balakrishnan et al., 1995

Evolutionary Algorithms for Network Architectures



Snoek et al., Practical Bayesian 
Optimization of Machine Learning 

Algorithms, 2012

Bergstra and Bengio, Random 
search for hyper-parameter 

optimization, 2012

Zoph and Le, Neural architecture 
search with reinforcement learning, 

2017

Liu et al. DARTS: Differentiable 
Architecture Search, 2019

References: 

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical bayesian optimization of machine 
learning algorithms." Advances in neural information processing systems. 2012. 

Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." JMLR (2012) 

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint 
arXiv:1611.01578. 

Baker, Bowen, et al. "Accelerating neural architecture search using performance prediction." arXiv 
preprint arXiv:1705.10823 (2017). 

Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." ICLR 2019 

Strategy 4: Neural Architecture Search



DARTS: Differentiable Architecture Search
Challenge: architecture search is non-differentiable

Problem: Network performance (e.g. accuracy) does not change smoothly 
w.r.t architecture changes 
- we cannot use gradient-based optimisation :(

DARTS solution: solve a continuous relaxation of the problem. To learn a cell: 
•Place a mixture (weighted sum) of operations on each edge 
•Jointly optimise network parameters and mixture probabilities 
•Induce final architecture from mixing probabilities

?
3x3 conv 5x5 conv

Max pool etc.
=

Network Cell

Bilevel Optimisation

Each node can be computed from predecessors: 

         

Relaxation: Consider mixtures of candidate operations, , via: 

         

The goal is then to learn . 

Let  and  denote training/validation loss. 

Let  the denote network parameters (e.g. convolution weights). 

We'd like to solve a bilevel optimisation problem: 

         

        s..t.  

Evaluating architecture gradients is prohibitively slow (the inner loop 
requires training a network) so we use an approximation: 

   

x( j) = ∑
i<j

o(i, j)(x(i))

𝒪

ō(i, j)(x) = ∑
o∈𝒪

exp(α(i, j)
o )

∑o′ ∈𝒪 exp(α(i, j)
o′ )

o(x)

α = {α(i, j)}

ℒtrain ℒval

w

min
α

ℒval(w*(α), α)

w*(α) = argminwℒtrain(w, α)

∇αℒval(w*(α), α) ≈ ∇αℒval(w − ξ∇wℒtrain(w, α), α)

operation from node  to node i j

operation weights 

 is the upper-level variableα

 is the lower-level variablew

Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search." ICLR 2019

1 step of gradient descent

No formal convergence guarantees, but works in practice...



Scaling phenomena and the role of hardware

1 petaflop-day is approx. 
8 V100 GPUs running for 1 day

GPT-3 (175B parameters) 
reportedly trained on a server 
with several thousand GPUs

GPT-3 (est)

Megatron-Turing NLG 530B 
(Nov, 2021) trained on 4K 

A100 GPUs

Amodei and Hernandez, AI and Compute, 2018



What factors are enabling effective compute scaling?

Hernandez and Brown, "Measuring the Algorithmic Efficiency of Neural Networks.” arXiv preprint arXiv:2005.04305 (2020).

Estimated cost of cloud 
compute for models like 

GPT-3: O(10 Million) USD

https://twitter.com/eturner303/status/1266264358771757057

Effective compute  FLOPs 
required to reach AlexNet-

level ImageNet 
performance

≈



References/Footnotes: 
P. Anderson, “More is different.” Science 177 4047 (1972): 393-6 
The "wisecrack" of Hemingway appears as a comment made by a character in one of his novels (http://www.quotecounterquote.com/2009/11/rich-are-different-famous-quote.html) 
R. Hamming “The Art of Doing Science and Engineering: Learning to Learn.” (1997)

Scaling phenomena and the role of hardware

“In almost all fields, a factor of ten means fundamentally new effects.  If you 
increase magnification by a factor of 10 in Biology, you will see new things.”

Hamming, Art of doing science and engineering, 1997

FITZGERALD: The rich are different from us. 
HEMINGWAY: Yes, they have more money.

Is it "just engineering", or something more fundamental? 

Note: It is often challenging to analyse shifts from quantitative to qualitative differentiation.

How important is scale for Deep Neural Networks?

Is cell biology "just" applied molecular biology?  
Is molecular biology "just" applied chemistry? 
Is chemistry "just" applied many-body physics?  
.... 
One science obeys the laws of the other. 
But at each stage, new laws and concepts are necessary.

Hierarchy of sciences

Qualitative vs Quantitative

http://www.quotecounterquote.com/2009/11/rich-are-different-famous-quote.html


The Transformer: a model that scales particularly well...
Transformer Architecture

Vaswani et al. “Attention is All you Need”, NeurIPS 2017 
The Annotated Transformer, https://nlp.seas.harvard.edu/2018/04/03/attention.html

Multi-Head Attention

Encoder

Decoder

Scaled Dot-Product Attention

subject_quality = { 

    "computer_vision": 10, 

    "everything_else": 3, 

} 

print(subject_quality["computer_vision"]) # 10

Keys (K)

Intuition: The humble Python dictionary

Values (V)

Query (Q)

print(subject_quality["machine_learning"]) # ? 

# raises KeyValueError :(

But suppose we had a similarity function, sim(),  that told 
us how similar the query is to each key. 

sim("machine_learning", "computer_vision") = 0.8 

sim("machine_learning", "everything_else") = 0.2 

machine_learning_quality = 0.8 * 10 + 0.2 * 3

Attention(Q, K, V ) = softmax( QKT

dk )V

Ensures similarities sum to 1

Scaling to improve softmax 
gradients (  is key dimensionality)dk

Masking is optionally applied to control 
which keys the query is compared to

Self-Attention QK V

QK V

Positional Encoding

By default queries and keys have no 
information about sequence position. 
Solution - add a code for position: 

PE( pos,2i+1) = cos( pos

10000
2i
dm

)PE( pos,2i) = sin( pos

10000
2i
dm )

x1 x2
Unique code at each position

Note: Unlike recurrent networks, transformers are 
amenable to parallelisation.

Concatenate attention outputs

= 8.6

https://nlp.seas.harvard.edu/2018/04/03/attention.html


Transformer scaling laws for natural language
Intriguing characteristics

Kaplan et al. “Scaling Laws for Neural Language Models.” ArXiv abs/2001.08361 (2020)

Larger models require fewer samples 
to reach the same performance.

Predictable scaling

If extra compute is available, allocate 
most towards increasing the model size!

Transformer performance on 
language modelling tasks scales 
predictably as a power law with: 

•Compute 

•Training data size 

•Model size

Some power laws were found that 
span more than seven orders of 
magnitude.
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Vision Transformer

Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.” ICLR 2021

Vision Transformer (ViT) Architecture

Re-purposes the Transformer (encoder) for vision by: 
•Splitting images into patches, projecting to embeddings 
•Inserting an extra [CLASS] token 
•Adding on position embeddings

The importance of pre-training scale

ImageNet transfer performance

1.3M images 14M images 303M images

(CNN)

In lower-data regime, the stronger inductive biases 
(locality, translation invariance) of the CNN works better. 
But in the higher-data regime (e.g. JFT-300M), ViT shines.

Larger BiT

Smaller BiT



Transformer Explosion

Buades et al. “A non-local algorithm for image denoising.” CVPR 2005  
Wang et al. “Non-local Neural Networks.” CVPR 2018 
Khan et al. “Transformers in Vision: A Survey.” ArXiv abs/2101.01169 (2021)

Object Detection: DETR

Research Interest in the Vision Community

Historical context: non-local means

Semantic Segmentation: Segmenter

Computational tricks

The "self-attention" operation has long been used in the 
image processing community for de-noising, under the name 
"non-local means":

NL[v](i) = ∑
j∈I

w(i, j)v( j)

Here  is a noisy image, and the weights 
 depend on the similarity between pixels  and . 

v = {v(i) | i ∈ I}
{w(i, j)}j i j

However, the broad applicability and value of this (highly 
flexible) operation has become clearer in recent years.

Action Recognition: Video Action Transformer Network

Carion et al. “End-to-End Object Detection with Transformers.” ECCV (2020)  
Strudel et al. “Segmenter: Transformer for Semantic Segmentation.” ICCV 2021 
Girdhar et al. “Video Action Transformer Network.” CVPR 2019

The Swin Transformer achieves linear 
complexity by restricting self-attention to 
fixed regions (like a CNN....).

Child et al. “Generating Long Sequences with Sparse 
Transformers.” ArXiv abs/1904.10509 (2019) 
Liu et al. “Swin Transformer: Hierarchical Vision Transformer 
using Shifted Windows.” ICCV 2021

Problem: self-attention has quadratic 
complexity in the input size (every element 
attends to every other element).

The Sparse Transformer factors 
attention to reduce complexity to 𝒪(n n)

Many solutions have been proposed, 
including:



Neural Network Design and Energy Consumption
Deep Neural Networks are Energy Intensive

Strubell, Emma et al. “Energy and Policy Considerations for Deep Learning in NLP.” ArXiv abs/1906.02243 (2019) 
Image credit: https://www.desktopbackground.org/wallpaper/white-bear-put-hand-on-head-wild-animal-wallpaper-jpg-492933 
Patterson et al. “Carbon Emissions and Large Neural Network Training.” ArXiv abs/2104.10350 (2021)

Transformers represent many of the biggest models

Reasons for optimism: 

• There are significant opportunities for grid efficiency: training is not time-
sensitive (can be scheduled to maximise peak renewable energy times) 

• Fusion is only 30 years away....

https://www.desktopbackground.org/wallpaper/white-bear-put-hand-on-head-wild-animal-wallpaper-jpg-492933


End of Lecture 15


