Image Structure

Feature Detection and Matching
4F12: Computer Vision

Instructor: Samuel Albanie

Based on course material authored by Roberto Cipolla Tag = Very Examinable

m Tag = Non Examinable



Representing Images via Intensities
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' Colour images can be
HEE EEE = 4K represented by stacking 3
1| B matrices (Red-Green-Blue).
........ 3840 x 2160 ——

A monochrome image can be Typically, we use 256 (2°) Certain matrix sizes (image
represented as a matrix of discrete values to represent resolutions) are commonly RGB elements can be packed

tightly together which can be
blended to form the
appearance of any colour. ¥

intensity values I(x, y) intensities (using 8 bits is used for TVs, monitors,
"computer friendly") phone screens etc.

Image credit: "pixel geometry", hitps://commons.wikimedia.org/wiki/File:Pixel_geometry_01_Pengo.jpg



Challenge: Nuisance factors in image data

If a point on an object (in this case, a torta di mele) is

visible in view, the intensity I(x, y) is a function of many
geometric and photometric variables:

* The position and orientation of the camera

* The geometry of the scene (3D shapes and layout)

* The nature and distribution of light sources

* Reflectance properties of the surfaces: specular-
Lambertian, albedo O (black) - 1 (white)

* The properties of the camera lens and sensor array

In practice, the point may only be partially visible, or its
appearance may also be affected by occlusion.

Reference: pixel geometry, "Cafe" by avinashbhat is licensed with CC BY-SA 2.0.



Challenge: Data reduction

Goals for generic features:

With current computers, it is necessary to discard most of the data from the

camera before any attempt can be made at realtime interpretation.
* Allow the image to be discarded, so that

all subsequent processing is done on the
features themselves. This enables us to
reduce the amount of data

Raw image data e.g. from iSight CCD camera:
GoPro 10 (CMOS) cameras: 640x480 video at 30 Raw Image data
Generic salient features

5.3K video at 60 fps
® Preserve the useful information in the

images (such as the albedo changes and
2D shape of objects in the scene)

® Discard the redundant information in the
images (such as the lighting conditions).

Interpretation

O(10 Gbits/sec) O(100 Mbits/sec) O(100+ Kbits/sec) * As generic as possible (so the same

processing will be useful across a wide

How can we achieve such a dramatic e range of applications).

Image credifs: hitps://pixabay.com/photas/camera-go-pro- Boyle and Smith won the Nobel LRI H | OpenAl's powerful 2021 CLIP model i EYYeI2e (R ITNTe
people-hand-mount-2590899/

https://en.wikipedia.org/wiki/
File:Apple_iSight_FireWire_Camera.jpg

Prize in Physics in 2009 for their (trained on hundreds of GPUs) still
invention of CCD technology only uses up to 448 pixel images



https://pixabay.com/photos/camera-go-pro-people-hand-mount-2590899/
https://pixabay.com/photos/camera-go-pro-people-hand-mount-2590899/
https://pixabay.com/photos/camera-go-pro-people-hand-mount-2590899/
https://en.wikipedia.org/wiki/File:Apple_iSight_FireWire_Camera.jpg
https://en.wikipedia.org/wiki/File:Apple_iSight_FireWire_Camera.jpg

Computer vision as hierarchical processing

High-level question Action

(many bits)

Raw image Primal sketch 2.5 D sketch

Local surface

Blobs, edge orientation,
segments, zero- distance from
crossings, viewer, depth
groups.. discontinuities

Perceived
intensities

. Dangerous animal? (1 bit) If dangerous, run away!
Raw image
Ripe fruit? (1 bit) If ripe, pluck and eat
Have | been here before? (1 bit) If so, relax (slightly) to conserve energy I'\

Marr hierarchy

3D Model representations

3D models arranged
hierarchically, based Address the question

on shape primitives

Aside: there are other theories of
human vision in the neuroscience

Levels of abstraction Lower-level features mid-level features high-level features/semantics community (Hawkins et al., 2017)

Deep learning

Raw image
. ) Address the
!’ercel.v.ed question
Intensities

Mindset: automatically learn all the layers of the hierarchy

Study of Image Structure

Natural images have very particular properties that enable
dramatic compression.

We want to understand in detail how to efficiently extract low-
level generic features ("primitives") from image structures as
building blocks for image interpretation, particularly matching.

Reference: D. Marr, "Vision: A computational investigation into the human representation and processing of visual information" (1982)

J. Hawkins, S. Ahmad, and Y. Cui, "A theory of how columns in the neocortex enable learning the structure of the world." Frontiers in neural circuits (2017)



Image structure
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Note that an edge or corner representation imparts a desirable invariance to lighting: the intensity discontinuities are likely to be
prominent, whatever the lighting conditions.

Computational question:




1D Edge Detection

When developing an edge detection algorithm, it is
important to bear in mind the invariable presence of
Image noise.

Consider this signal 1(x) with an obvious edge:

200 600 800 1000 1200 1400 1600 1800 2000

An intuitive approach to edge detection might
be to look for maxima and minima in I'(x).

Figure credits: S. Seitz

The derivative of the signal looks like this:

Differentiated signal

o

| | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Oh dear: it's hard to spot the edge in this signal!

Our simple strategy was defeated by high-frequency noise
(which is amplified by differentiation).

For this reason, all edge detectors start by the
signal to suppress noise.

The most common approach is to use a Gaussian filter (a low-
pass filter that suppresses high frequencies).




1D Edge Detection (with smoothing)

1D Edge Detection algorithm

|
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A broad overview of 1D edge detection is:

1. First, convolve the signal g(x) with a Gaussian kernel
1 X
86(X) = eXP(
o\ 21

> to produce smooth
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Compute 5'(x), the derivative of

Find maxima and minima of s/(x).
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Use on the magnitude of the extrema to

mark edges. maximum Derivative s'(x)
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Figure credits: S. Seitz



1D Edge Detection: a computational trick

The smoothing in step 1 was performed by a 1D
convolution with a Gaussian:

(©9)

s(x) = 1(x) @ g,(x) = J g, (WI(x — w)du = [ g,(x — w)I(u)du

— Q0

The differentiation in step 2 is also performed by a 1D
convolution. So it seems that edge detection requires two
computationally expensive convolutions.

.»""/(V.v \\"‘».

However, the comes to The Gaussian Kernel The Derivative of
the rescue! Gaussian Kernel

d
5'(x) = E[gG(X) ® 1(x)] = g,(x) @ I(x)

So we can compute s'(x) with just a single convolution - a
major saving!




1D Edge Detection (faster)

Faster 1D Edge Detection algorithm

| | | | |
600 800 1000 1200 1400 1600 1800 2000
The fast variant of the edge detection algorithm becomes

Convolve the signal I(x) with a derivative of Gaussian

Kernel g/(x) to produce s'(x) directly.

1 1

1 1
600 800 1000 1200 1400 1600 1800 2000

Find maxima and minima of s/(x). :
maxima _

f Y

Use on the magnitude of the extrema to
mark edges.

Differentiation

—
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Figure credits: S. Seitz



1D Edge Detection: zero-crossings

Fastest 1D Edge Detection algorithm

Finding maxima and minima of s'(x) is the same as
looking for zero-crossings of !

| |

I | I
1000 1200 1400 1600 1800 2000

In many implementations of edge detection algorithms,
the signal is convolved with the Laplacian of a Gaussian

("LoG" kernel), ¢/ (x), by applying the derivative theorem
of convolution a second time:

| | | | |
1000 1200 1400 1600 1800 2000

5(0) = g(x) @ I(x) S e
| | possible edge

Convolution
@)
|

The zero crossings of mark possible edges.

| | | | | | | |
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Figure credits: S. Seitz



1D Edge Detection: scale

We have not yet addressed the
critical issue of what value of o to
use.

Consider this signal:

VAAAAY

| | ! 1 | |
800 1000 1200 1400 1600 1800 2000

Does the signal have one "positive"
edge or a number of "positive" and

"negative" edges?

It's up to you to choose!

Figure credits: S. Seitz

Fine detail edges

Using a small ¢ brings out all the
edges.

signal 1(x)

400 600 800 1000 1200 1400 1600 1800 2000

Derivative of Gaussian kernel g/(x)

800 1000 1200 1400 1600 1800 2000

Derivative s'(x)

Convolution

0 200

Coarse detail edges

As o increases, the signal is smoothed
more and more, and only the central
edge survives.

signal 1(x)

|
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Derivative of Gaussian kernel g/ (x)

| | | |
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Derivative s'(x)
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1D Edge Detection: multi-scale

The link between Example: a dish cloth

The amount of smoothing controls the
scale at which we analyse the image.
There is no right or wrong size for the
Gaussian kernel: it all depends on the
scale we're interested in.
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Modest smoothing (a Gaussian kerne
with small o) brings out edges at a fine

scale. More smoothing (
identifies edges at Original image
suppressing the finer detail.
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Note: Fine scale edge detection is particularly sensitive to noise (less of an issue when analysing images at coarse scales).




2D Edge Detection (step 1: smoothing)

Step 1: smoothing

Effects of Gaussian smoothing
The 1D edge detection scheme can be
extended to work in two dimensions.

First we smooth the image I(x, y) by
convolving with a 2D Gaussian G _(x, y):

2 2

G (x,y) = : exp(—x +y>
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Original image o = 3 pixels o = 4 pixels

S(x,y) = Gyx,y) @ I(x,y)

= J J G (u,v)I(x —u,y — v)dudy

— Q00




2D Edge Detection (step 2: gradients)

Step 2: gradients Example: fruity gradients

The second step is to compute the gradient of
the smoothed image S(x, y) at every pixel:

VS=V(G. @I

oG, ® 1)
ox
G, ® I)

Original image Edge strength |V S|




2D Edge Detection (step 3: NMS & step 4: thresholding)

Step 3: Non-Maxima Suppression Step 4: Thresholding

The third stage of the edge detection algorithm is

In the fourth and final step, the edgels are

thresholded, so that only those with | V.S'| above a
Edge elements, or edgels, are placed at locations certain value are retained.

where | VS|is greater than local values of | VS|

in the directions =V .S. This aims to ensure that all
edgels are located at ridge-points of the surface

| VS].

=S Edge strength | VS| after NMS
= and thresholding
Edge strength | VS| after NMS




2D Edge Detection (variations)

Canny Edge Detection Marr-Hildreth Edge Detection

An alternative approach to edge detection was

developed by Marr and Hildreth (1980).

The edge detection algorithm we have been

describing is due to Canny (1986). Unlike the directional Canny edge detector, the

Marr-Hildreth operator is
The output is a list of edgel positions, each with a

strength | VS| and an orientation V.S/|VS]|.

It finds zero-crossings of VG ® I, where V>G . is

the Laplacian of G, (recall the Laplacian operator

The Canny detector is a directional edge finder 2 R
(both the gradient and are — +

computed)

References:

Canny, J. A computational approach to edge detection. TPAMI 1986
D. Marr and E. Hildreth, "Theory of edge detection." Proc. of the Royal Society of London. Series B. Biological Sciences, 1980



Edge Detection: Implementation details

Truncated summations Truncation: how much is acceptable? Another computational trick!

In practice, the image and filter kernels are
discrete quantities and the convolutions are

performed as The 2D convolutions would appear to

For acceptable accuracy, be computationally expensive.

kernels are generally truncated

O\ that the discarded |
S(x,y) = Z Z G (u,I(x —u,y —v) Z?,e |:ss t:qnls]c;:l]rogo SOC;T}?:S However, they can be decomposed

U=—n v=—n into two 1D convolutions:

peak value.

G,(x,y) @ I(x,y) = g,(x) ® [g,(y) @ I(x,y)]

1.0

7 The computational saving is:

2n + 1)?

S/ .

U 221 + 1)

n

2n+1 pixel filter kernel




Edge Detection: Implementation details

Differentiation via convolution Implementing first order derivatives

, . , , We can calculate the finite-difference approximation to
Differentiation of the smoothed image is . .
dS/0x by convolving the rows of smoothed image samples,

Iso impl ted with
aiso impiemented with d S(x,y), with the 3-element kernel:

T

Recall that when convolving, we flip the kernel and sum
the element-wise products under each kernel position:

By considering the Taylor-series
expansion of S(x, y) one can show that a

simple finite-difference approximation to
the first-order spatial derivative of S(x, y)

with respect to x is given by: I___
L]
a5  Sx+1,y)—Sx— Ly) ﬁ' 1

o 2

Note: this is often called "valid" convolution (the kernel is
not allowed to run off the edges of S(x, y)).




End of Image Structures
Lecture 1




Back-of-the-envelope calculations for uncompressed data rates (slide 4)

GoPro 10 raw data rate "5.3K at 60 fps" = colour depth X width X height X fps =

8 X 5312 x 2988 x 60 = 7.6 Gbits/second (in practice, though, the maximum bitrate that can be
stored is 100 Mbits/sec)

iISight camera (24-bit, 480p @ 30 fps): = 24 x 640 x 480 x 30 = 221 Mbit/s.

Slide content credits

Much of the content of these slides is based on material by Roberto Cipolla. For other cases, | have
tried to credit the figures where possible, but finding the original sources can be challenging (useful
figures naturally propagate across many slide decks!) Please let me know if you spot a missing
reference.

Useful reference: hitps://en.wikipedia.org/wiki/Uncompressed_video



