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Image Structure
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Representing Images via Intensities

A monochrome image can be 
represented as a matrix of 
intensity values I(x, y)
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Typically, we use 256  
discrete values to represent 
intensities (using 8 bits is 
"computer friendly")   

(28)

Colour images can be 
represented by stacking 3 
matrices (Red-Green-Blue).

Image credit: "pixel geometry", https://commons.wikimedia.org/wiki/File:Pixel_geometry_01_Pengo.jpg

Certain matrix sizes (image 
resolutions) are commonly 
used for TVs, monitors, 
phone screens etc.

3840 x 2160

4K

HD
1280 x 720

VGA
640 x 480

QVGA
320 x 240

RGB elements can be packed 
tightly together which can be 
blended to form the 
appearance of any colour. NE



Challenge: Nuisance factors in image data

I(x, y)

Reference: pixel geometry, "Cafe" by avinashbhat is licensed with CC BY-SA 2.0. 
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If a point on an object (in this case, a torta di mele) is 
visible in view, the intensity  is a function of many 
geometric and photometric variables: 

•The position and orientation of the camera 

•The geometry of the scene (3D shapes and layout) 

•The nature and distribution of light sources 

•Reflectance properties of the surfaces: specular- 
Lambertian, albedo 0 (black) - 1 (white) 

•The properties of the camera lens and sensor array  

In practice, the point may only be partially visible, or its 
appearance may also be affected by occlusion.

I(x, y)



Challenge: Data reduction

With current computers, it is necessary to discard most of the data from the 
camera before any attempt can be made at real-time interpretation.

Raw image data e.g. from 
GoPro 10 (CMOS) cameras: 
5.3K video at 60 fps

Generic salient features

Raw Image data

Interpretation

O(100 Mbits/sec) O(100+ Kbits/sec)O(10 Gbits/sec)

Goals for generic features: 

•Allow the image to be discarded, so that 
all subsequent processing is done on the 
features themselves. This enables us to 
reduce the amount of data 

•Preserve the useful information in the 
images (such as the albedo changes and 
2D shape of objects in the scene) 

•Discard the redundant information in the 
images (such as the lighting conditions). 

•As generic as possible (so the same 
processing will be useful across a wide 
range of applications).How can we achieve such a dramatic data reduction?

iSight CCD camera: 
640x480 video at 30 
fps 

Research TriviaOpenAI's powerful 2021 CLIP model 
(trained on hundreds of GPUs) still 
only uses up to 448 pixel images NE

Image credits: https://pixabay.com/photos/camera-go-pro-
people-hand-mount-2590899/ 
https://en.wikipedia.org/wiki/

File:Apple_iSight_FireWire_Camera.jpg

Research TriviaBoyle and Smith won the Nobel 
Prize in Physics in 2009 for their 
invention of CCD technology NE

https://pixabay.com/photos/camera-go-pro-people-hand-mount-2590899/
https://pixabay.com/photos/camera-go-pro-people-hand-mount-2590899/
https://pixabay.com/photos/camera-go-pro-people-hand-mount-2590899/
https://en.wikipedia.org/wiki/File:Apple_iSight_FireWire_Camera.jpg
https://en.wikipedia.org/wiki/File:Apple_iSight_FireWire_Camera.jpg


Lower-level featuresLower-level features

Computer vision as hierarchical processing

Raw image 
(many bits)

Dangerous animal? (1 bit) If dangerous, run away!
Vision 
system Ripe fruit? (1 bit) If ripe, pluck and eat

High-level question Action

Raw image Primal sketch 2.5 D sketch 3D Model representations

Perceived 
intensities

Blobs, edge 
segments, zero-

crossings, 
groups..

Local surface 
orientation, 

distance from 
viewer, depth 
discontinuities

3D models arranged 
hierarchically, based 
on shape primitives

Marr hierarchy

mid-level features high-level features/semantics

Address the question

Raw image

Perceived 
intensities

Address the 
question

Deep learning

Mindset: automatically learn all the layers of the hierarchy

Study of Image Structure

Levels of abstraction

Natural images have very particular properties that enable 
dramatic compression. 

We want to understand in detail how to efficiently extract low-
level generic features ("primitives") from image structures as 
building blocks for image interpretation, particularly matching.

Reference: D. Marr, "Vision: A computational investigation into the human representation and processing of visual information" (1982) 
J. Hawkins, S. Ahmad, and Y. Cui, "A theory of how columns in the neocortex enable learning the structure of the world." Frontiers in neural circuits (2017) 

Aside: there are other theories of 
human vision in the neuroscience 
community (Hawkins et al., 2017)

NE

NE

Have I been here before? (1 bit) If so, relax (slightly) to conserve energy



Image structure

Let's examine pixel values in three 
patches in this photo of Claire:  

•A featureless region 

•An edge 

•A corner

0D

The featureless region is 
characterised by a smooth 
variation of intensities. 

1D

The patch containing the 
edge reveals an intensity 
discontinuity in one 
direction. 

2D

The patch containing the 
corner reveals an intensity 
discontinuity in two 
directions. 

Note that an edge or corner representation imparts a desirable invariance to lighting: the intensity discontinuities are likely to be 
prominent, whatever the lighting conditions. Computational question: How can we find these structures efficiently?



1D Edge Detection
When developing an edge detection algorithm, it is 
important to bear in mind the invariable presence of 
image noise.

An intuitive approach to edge detection might 
be to look for maxima and minima in I'(x). 

Consider this signal I(x) with an obvious edge:

The derivative of the signal looks like this:

Oh dear: it's hard to spot the edge in this signal! 

Our simple strategy was defeated by high-frequency noise 
(which is amplified by differentiation). 

For this reason, all edge detectors start by smoothing the 
signal to suppress noise.  

The most common approach is to use a Gaussian filter (a low-
pass filter that suppresses high frequencies). 

Figure credits: S. Seitz



1D Edge Detection (with smoothing)

A broad overview of 1D edge detection is: 

1. First, convolve the signal  with a Gaussian kernel 

 to produce smooth . 

2. Compute , the derivative of . 

3. Find maxima and minima of . 

4. Use thresholding on the magnitude of the extrema to 
mark edges.

I(x)

gσ(x) =
1

σ 2π
exp( −

x2

2σ2 ) s(x)

s′ (x) s(x)

s′ (x)

signal I(x)

Gaussian kernel gσ(x)

σ = 50

Smoothed signal s(x)

Derivative s′ (x)maximum

1D Edge Detection algorithm

above threshold?

Figure credits: S. Seitz



1D Edge Detection: a computational trick
The smoothing in step 1 was performed by a 1D 
convolution with a Gaussian: 

 

The differentiation in step 2 is also performed by a 1D 
convolution. So it seems that edge detection requires two 
computationally expensive convolutions.  

However, the derivative theorem of convolution comes to 
the rescue! 

 

So we can compute  with just a single convolution - a 
major saving!

s(x) = I(x) ⊛ gσ(x) = ∫
∞

−∞
gσ(u)I(x − u)du = ∫

∞

−∞
gσ(x − u)I(u)du

s′ (x) =
d
dx

[gσ(x) ⊛ I(x)] = g′ σ(x) ⊛ I(x)

s′ (x)

gσ(x)

The Gaussian Kernel The Derivative of 
Gaussian Kernel

g′ σ(x)



1D Edge Detection (faster)

The fast variant of the edge detection algorithm becomes 

1. Convolve the signal  with a derivative of Gaussian 
Kernel  to produce  directly. 

2. Find maxima and minima of . 

3. Use thresholding on the magnitude of the extrema to 
mark edges.

I(x)
g′ σ(x) s′ (x)

s′ (x)

signal I(x)

Derivative of Gaussian kernel g′ σ(x)

σ = 50

Derivative s′ (x)maxima

Faster 1D Edge Detection algorithm

above threshold?

VE

Figure credits: S. Seitz



1D Edge Detection: zero-crossings

Finding maxima and minima of  is the same as 
looking for zero-crossings of ! 

In many implementations of edge detection algorithms, 
the signal is convolved with the Laplacian of a Gaussian 
("LoG" kernel), , by applying the derivative theorem 
of convolution a second time: 

 

The zero crossings of  mark possible edges. 

s′ (x)
s′ ′ (x)

g′ ′ σ(x)

s′ ′ (x) = g′ ′ σ(x) ⊛ I(x)

s′ ′ (x)

signal I(x)

Laplacian of Gaussian kernel g′ ′ σ(x)

σ = 50

Second Derivative s′ ′ (x)

possible edge

Fastest 1D Edge Detection algorithm

VE

Figure credits: S. Seitz



1D Edge Detection: scale 

We have not yet addressed the 
critical issue of what value of  to 
use.  

Consider this signal:

σ

Does the signal have one "positive" 
edge or a number of "positive" and 
"negative" edges?  

It's up to you to choose!

Fine detail edges

Using a small  brings out all the 
edges.

σ

signal I(x)

Derivative of Gaussian kernel g′ σ(x)

Derivative s′ (x)

Coarse detail edges

σ = 20

As  increases, the signal is smoothed 
more and more, and only the central 
edge survives. 

σ

signal I(x)

Derivative of Gaussian kernel g′ σ(x)

Derivative s′ (x)

σ = 50

Figure credits: S. Seitz



1D Edge Detection: multi-scale 

The amount of smoothing controls the 
scale at which we analyse the image. 
There is no right or wrong size for the 
Gaussian kernel: it all depends on the 
scale we’re interested in.  

Modest smoothing (a Gaussian kernel 
with small ) brings out edges at a fine 
scale. More smoothing (larger ) 
identifies edges at larger scales, 
suppressing the finer detail.

σ
σ

The link between smoothing and scale

Original image

Example: a dish cloth

σ = 1 σ = 5

Note: Fine scale edge detection is particularly sensitive to noise (less of an issue when analysing images at coarse scales).  



2D Edge Detection (step 1: smoothing)

The 1D edge detection scheme can be 
extended to work in two dimensions.  

First we smooth the image  by 
convolving with a 2D Gaussian : 

I(x, y)
Gσ(x, y)

Step 1: smoothing

Original image

Effects of Gaussian smoothing

 pixelsσ = 3

S(x, y) = Gσ(x, y) ⊛ I(x, y)

 Gσ(x, y) =
1

2πσ2
exp( −

x2 + y2

2σ2 )

= ∫
∞

−∞ ∫
∞

−∞
Gσ(u, v)I(x − u, y − v)dudv

 pixelsσ = 4



2D Edge Detection (step 2: gradients)

The second step is to compute the gradient of 
the smoothed image  at every pixel: 

 

S(x, y)

∇S = ∇(Gσ ⊛ I)

Step 2: gradients

=

∂(Gσ ⊛ I)
∂x

∂(Gσ ⊛ I)
∂y

=

∂Gσ

∂x ⊛ I
∂Gσ

∂y ⊛ I

Example: fruity gradients

Original image Edge strength |∇S |



2D Edge Detection (step 3: NMS & step 4: thresholding)

The third stage of the edge detection algorithm is 
Non-Maxima Suppression (NMS).  

Edge elements, or edgels, are placed at locations 
where is greater than local values of  
in the directions . This aims to ensure that all 
edgels are located at ridge-points of the surface 

. 

|∇S | |∇S |
±∇S

|∇S |

Step 3: Non-Maxima Suppression Step 4: Thresholding

In the fourth and final step, the edgels are 
thresholded, so that only those with above a 
certain value are retained. 

|∇S |

Edge strength  after NMS|∇S |

Edge strength  after NMS 
and thresholding

|∇S |



2D Edge Detection (variations)

The edge detection algorithm we have been 
describing is due to Canny (1986).  

The output is a list of edgel positions, each with a 
strength and an orientation .  

The Canny detector is a directional edge finder 
(both the gradient magnitude and direction are 
computed) 

|∇S | ∇S/ |∇S |

Canny Edge Detection Marr-Hildreth Edge Detection

References: 
Canny, J. A computational approach to edge detection. TPAMI 1986 
D. Marr and E. Hildreth, "Theory of edge detection." Proc. of the Royal Society of London. Series B. Biological Sciences, 1980

An alternative approach to edge detection was 
developed by Marr and Hildreth (1980). 

Unlike the directional Canny edge detector, the 
Marr-Hildreth operator is isotropic.  

It finds zero-crossings of , where  is 
the Laplacian of  (recall the Laplacian operator 

). 

∇2Gσ ⊛ I ∇2Gσ
Gσ

∇2 =
∂2

∂x2
+

∂2

∂y2

∇2Gσ



Edge Detection: Implementation details

In practice, the image and filter kernels are 
discrete quantities and the convolutions are 
performed as truncated summations:  

S(x, y) =
n

∑
u=−n

n

∑
v=−n

Gσ(u, v)I(x − u, y − v)

Truncated summations Truncation: how much is acceptable?

For acceptable accuracy, 
kernels are generally truncated 
so that the discarded samples 
are less than 1/1000 of the 
peak value.  

Another computational trick!

The 2D convolutions would appear to 
be computationally expensive.  

However, they can be decomposed 
into two 1D convolutions: 

 

The computational saving is: 

 

Gσ(x, y) ⊛ I(x, y) = gσ(x) ⊛ [gσ(y) ⊛ I(x, y)]

(2n + 1)2

2(2n + 1)



Edge Detection: Implementation details

Differentiation of the smoothed image is 
also implemented with a discrete 
convolution.  

By considering the Taylor-series 
expansion of  one can show that a 
simple finite-difference approximation to 
the first-order spatial derivative of  
with respect to  is given by:  

S(x, y)

S(x, y)
x

∂S
∂x

=
S(x + 1,y) − S(x − 1,y)

2

Differentiation via convolution Implementing first order derivatives

We can calculate the finite-difference approximation to 
 by convolving the rows of smoothed image samples, 
, with the 3-element kernel:

∂S/∂x
S(x, y)

1/2 0 −1/2

Recall that when convolving, we flip the kernel and sum 
the element-wise products under each kernel position:

1/20−1/21 2 3 4

0 1 1 1
S(x, y) ∂S

∂x

11

01/2

Note: this is often called "valid" convolution (the kernel is 
not allowed to run off the edges of ).S(x, y)VE



End of Image Structures 
Lecture 1



Appendix

• GoPro 10 raw data rate "5.3K at 60 fps"   = 
 = 7.6 Gbits/second (in practice, though, the maximum bitrate that can be 

stored is 100 Mbits/sec) 

• iSight camera (24-bit, 480p @ 30 fps): = 24 × 640 × 480 × 30 = 221 Mbit/s.

= colour depth × width × height × fps
8 × 5312 × 2988 × 60

Useful reference: https://en.wikipedia.org/wiki/Uncompressed_video

Back-of-the-envelope calculations for uncompressed data rates (slide 4)

Slide content credits

Much of the content of these slides is based on material by Roberto Cipolla. For other cases, I have 
tried to credit the figures where possible, but finding the original sources can be challenging (useful 
figures naturally propagate across many slide decks!) Please let me know if you spot a missing 
reference.


