
Instructor: Samuel Albanie
Based on course material authored by Roberto Cipolla

Image Structure 2
Feature Detection and Matching
4F12: Computer Vision

NE Tag = Non Examinable

VE Tag = Very Examinable

Recap of last lecture

•How to represent images as matrices

•Nuisance factors in pixel intensity data

•Data reduction in computer vision and Marr's hierarchy

•Image structures: featureless regions, edges and corners

•Edge detection in 1D (and how to do it quickly)

•Edge detection in 2D (and how to do it quickly)

•Implementation details (truncated summations; convolution)

Summary

The Aperture Problem

Image credits: "Animated Example of the Aperture Problem", Bas Rokers. https://en.wikipedia.org/wiki/Motion_perception#/media/
File:Aperture_problem_animated.gif

The problem with edges

Suppose you are asked to look down through
an opening and observe a grate moving
below you. Which way is the grate moving?

Down and to the right? Straight down?
Only to the right?

It is impossible to tell!

Can only measure motion normal to the edge

While edges are a powerful intermediate
representation, they are sometimes insufficient.

This is especially the case when image motion
is being analysed.

The motion of an edge is rendered ambiguous
by the aperture problem: when viewing a
moving edge, it is only possible to measure the
motion normal to the edge locally.

Corners to the rescue

To measure image motion in
2D completely, we can look at
corner features.

We saw earlier that a corner
is characterised by an
intensity discontinuity in two
directions (this discontinuity
can be detected using
correlation).

(x, y)
.

image, I

patch, P
v

u

c(x, y)

(
n

∑
u=−n

n

∑
v=−n

(P(u, v) − P̄)2) (
n

∑
u=−n

n

∑
v=−n

(I(x + u, y + v) − Īx,y)2)

Cross-correlation - another important operator
Normalised cross-correlation

The normalised cross-correlation function measures how well an image patch matches
portions of an image, , that share the same size as the patch.

P(u, v)
I(x, y)

n

∑
u=−n

n

∑
v=−n

(P(u, v) − P̄)(I(x + u, y + v) − Īx,y)

Note that the cross-correlation is normalised to by computing it from the covariance
and variances of the two signals/patches (adds robustness to illumination changes)

[−1,1]

P̄ Īx,y

P̄ Īx,y

c(x, y) =

 is the mean pixel value of the patchP̄
 is the mean pixel value of the image under the patchĪx,y

covariance

variance of patch variance of image under patch

Normalised Cross-correlation: visualised

1 0 2 0

1 0 0 1I(x, y)

1 0 1 0

P(u, v)

1 0

1 0

c(x, y)
1 −0.6 0.3

1 −0.6 1

If we multiple numerator & denominator of by , we can interpret terms as the
covariance, variance of the patch and variance of the image under patch.

c(x, y) 1/n2

It entails sliding the patch over the image, computing the sum of the products of the pixels
and normalising the result:

1 0

1 0

no flipping!

(to 1 decimal place)

Note: it is common in software
implementations to pad the edges of

 with zeros so that is the
same shape as (unpadded) .
I(x, y) c(x, y)

I(x, y)

Examples of
paired pixels

Cross-correlation - corners
cross-correlation peaks at corners

A patch which has a well-defined peak in its autocorrelation (self cross-correlation) function can be classified as a "corner".

Auto-correlation with featureless patch

P

I(x, y) c(x, y)

Featureless

Auto-correlation with an edge patch

P

I(x, y) c(x, y)

Edge

Auto-correlation with a corner patch

P

I(x, y) c(x, y)

Corner

No clear peak in c(x, y) Produces ridge in c(x, y) Produces clear peak in !c(x, y)

peak

The link between sum of squared differences and cross-correlation

The sum-of-squared-differences (SSD), or squared Euclidean distance, is a
popular metric for comparing patch similarity.

It is computed between a patch containing pixels,
and another of the same size in an image via:

The (unnormalised) cross-correlation (a simpler variant of the formula we met
earlier) is given by:

If we expand the expression for , we obtain:

P(u, v) (2n + 1) × (2n + 1)
I(x, y)

SSD(x, y) =
n

∑
u=−n

n

∑
v=−n

(P(u, v) − I(x + u, y + v))2

UCC(x, y) =
n

∑
u=−n

n

∑
v=−n

P(u, v)I(x + u, y + v)

SSD(x, y)

SSD(x, y) =
n

∑
u=−n

n

∑
v=−n

P(u, v)2 − 2P(u, v)I(x + u, y + v) + I(x + u, y + v)2

Definitions The link

To see the link, note that:

1. The first patch term in , , is
constant w.r.t .

2. In natural images (captured from the real
world), pixel values often vary smoothly, and
so we can approximate the last term in

, , by a constant
(when summing across , this term will have
significant overlap for neighbouring).

With these observations, we have that:

Thus, we see that greater cross-correlation
implies greater similarity (a smaller distance)
under the metric.

SSD(x, y) P(u, v)2

x, y

SSD(x, y) I(x + u, y + v)2

u, v
x, y

SSD(x, y) ≈ − 2 ⋅ UCC(x, y) + constant

SSDconstant approx. constant

Useful reference: http://www.cse.yorku.ca/~kosta/CompVis_Notes/ssd_cross-correlation.pdf

An early corner detector proposed by Moravec
computes the sum-of-squared differences between a
patch and its immediate neighbours (with horizontal,
vertical and diagonal shifts), keeping the minimum value.

Corner Detection
Key challenge: A practical corner detection algorithm needs to do something more efficient than calculate full auto-
correlation functions for every single pixel (cost is quadratic in the number of pixels).

However, we can compute correlations with "local" (nearby) patches (this approach motivates corner detector algorithms).

Corner detection challenge

Moravec Corner Detector

References: Moravec, Hans Peter. Obstacle avoidance and navigation in the real world by a seeing robot rover. Dissertation. Stanford University, 1980.
Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey vision conference. 1988

NECorners are identified as local maxima across the image.

original

neighbour

shifts

Harris Corner Detector: motivation

Harris and Stephens (1988) noted several areas with
room for improvement in the Moravec corner detector:

•Only shifts at 45° are considered (what if the corner is
at a different angle?)

•Detection was too noisy

•The detector was too sensitive to edges

Corner Detection (Harris)

References: Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey vision conference. 1988
1More detailed derivation of equivalence: http://www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf

Harris Corner Detector: steps 1 & 2

1. First (similarly to edge detection) we smooth the
image to obtain , to allow us to take
gradients.

2. Calculate the change in intensity in an arbitrary
direction :

I(x, y) S(x, y)

n

Sn ≜ ∇S(x, y) ⋅ n
|n |

S2
n = (nT ∇S)(∇STn)

nTn =
nT [

S2
x SxSy

SxSy S2
y] n

nTn

where ∇S = [
Sx
Sy], Sx = ∂S

∂x
, Sy = ∂S

∂y

Harris Corner Detector: step 3

3. To address the noise in the Moravec detector, smooth by
convolution with a Gaussian kernel of size :

S2
n

σI

Cn(x, y) ≜ GσI
(x, y) ⊛ S2

n =
nT [

⟨S2
x ⟩ ⟨SxSy⟩

⟨SxSy⟩ ⟨S2
y ⟩] n

nTn

where is the smoothed value. This equivalent1 to weighting
the intensity differences squared, , in the local
neighbourhood by Gaussian weights centred at .

⟨ ⋅ ⟩
S2

n
(x, y)

The smoothed, squared change in intensity around in
direction is therefore given by:

(x, y)
n

Cn(x, y) = nT An
nTn where A ≜ [

⟨S2
x ⟩ ⟨SxSy⟩

⟨SxSy⟩ ⟨S2
y ⟩]

Corner Detection (Harris - eigenvalues)

Observation: since is symmetric, we have
cunningly defined as a Rayleigh quotient.
Thus, we know that .

Interpretation: if we try every possible
orientation , the maximum smoothed change in
squared intensity we will find is , and the
minimum value is .

A
Cn(x, y)

λmin ≤ Cn(x, y) ≤ λmax

n
λmax

λmin

References: Rayleigh quotients come up a lot in machine learning and computer vision.
(some other applications are described here https://www.sjsu.edu/faculty/guangliang.chen/Math253S20/lec4RayleighQuotient.pdf)NE

Reminder: a Rayleigh quotient1 of a symmetric matrix is a normalised quadratic form:

with the useful property that where are the smallest and largest eigenvalues of .

A

R(A, n) = nT An
nTn

λmin ≤ R(A, n) ≤ λmax λmin, λmax A

Rayleigh Quotients

Finding corners: we can therefore classify image structure
around each pixel by looking at the eigenvalues of :

No structure: (smooth variation)

1D structure: (edge) (direction of edge), large
(normal to edge)

2D structure: (corners) and both large

A

λmin ≈ λmax ≈ 0

λmin ≈ 0 λmax

λmin λmax

Finding corners from Cn(x, y)Interpreting Cn(x, y)

Corner Detection (Harris - det/trace)
The det/trace trick Applications of corner detection

It is necessary to calculate A at every pixel by first computing three images
of smoothed gradients ().

But, we can avoid computing the eigenvalues by evaluating the determinant
and trace of :

Finally, we mark corners where the quantity exceeds some
threshold (makes the detector a little "edge phobic").

⟨S2
x ⟩, ⟨SxSy⟩, ⟨S2

y ⟩

A

trace A = λmin + λmax = ⟨S2
x ⟩ + ⟨S2

y ⟩
det A = λminλmax = ⟨S2

x ⟩⟨S2
y ⟩ − ⟨SxSy⟩2

λ1λ2 − κ(λ1 + λ2)2

κ ≈ 0.04

Only large if both
and are large

λmax
λmin

Thresholding

Low threshold High threshold

Corners are most useful for tracking in
image sequences or matching in stereo
pairs.

Unlike edges, the displacement of a
corner is not ambiguous.

Corner detectors must be judged on
their ability to detect the same corners
in similar images.

Current detectors are not too reliable,
and higher-level visual routines must be
designed to tolerate a significant
number of outliers in the output of the
corner detector.

Suppose we have an animal classifier that works at just one scale.

The importance of scale invariance
Our dream: invariance

Dog Dog Wolf

To work in the real world, we want our models to be invariant
to certain properties of objects.

Example: Invariance to scale in object recognition: if our
model gives the same output for different scales of input, it is
said to be "scale invariant".

How to achieve invariance?

Prediction

zoom x1.25zoom x1zoom x0.75

Invariant across
these scales

Not invariant
across these scales

We want to be able to recognise tigers while they are still in the distance
as well as close up...

zoom x1.25zoom x1zoom x0.75

Estimated scale

If we can estimate the scale of an object, we can
normalise it to achieve scale invariance:

0.75 1 1.25

Normalisation Zoom by 1.333 Zoom by 1

Animal
classifier "Dog"

Zoom by 0.8

Input to animal
classifier

Dog Dog Dog

Input images

Very
valuable

Prediction

For a feature to be capable of predicting scale, it must itself
behave differently at different scales (i.e. it must not be
invariant).

Scale is difficult to infer from corners
Observation

Corners and edges are useful for identifying points of
interest, but they have a significant shortcoming:

It is difficult to infer the scale of edges and corners
Image 1 Image 2

Big
kennel

Little
kennel

zoomed in
camera

zoomed
out camera

A delivery robot with a
camera needs to
recognise two kennels
for a dog food delivery:

Which corner belongs to which kennel?

It is impossible to tell the scale
from the corner image!

References: K. Mikolajczyk and C. Schmid. "Indexing based on scale invariant interest points." ICCV 2001; The corner-to-edges figure is based on a figure from Rob Fergus.
Excellent resource for further reading: Szeliski, Richard. "Computer Vision: Algorithms and Applications." 2nd Edition (2021).

Sometimes yes

In practice....

It has been observed empirically that Harris corners alone do
not reliably predict scale (Mikolajczyk and Schmid, 2001)

Sometimes no

Inferring scale

Do corners behave differently at different scales?

A corner at
one scale

...becomes
edges at
another
scale!

Zoom in

Blobs
Motivation

We'd like a feature that can be used to reliably predict
scale. Blobs can help!

What is a blob?

A blob is an area of uniform/similar intensity in the image.

Whereas edges and corners are features which are found
at discontinuities, blobs are localised in the middle of areas
of similar intensity which are surrounded by pixels of a
different intensity on their boundaries.

Blobs

Detecting blobs

Blobs can be detected with the Laplacian of Gaussian filter.

Despite a noisy signal, the minima of the response from the scale-
normalised Laplacian of Gaussian at the correct scale, , localise the
centres of bright blobs on a dark background perfectly.

By contrast, dark blobs on a bright background will produce
maxima in the response.

σ

⊛ =

1D line scan

Response
minimumminimumminimum

LoG filter

σ = 20

Reference: T. Lindeberg. "Detecting salient blob-like image structures and their scales with a
scale-space primal sketch: A method for focus-of-attention." IJCV, 1993

Response

Blob centres and band-pass filtering
Why does the Laplacian of Gaussian filter give a strong negative response at the centre of a bright blob
on a dark background (for the appropriate value of)?

To build intuition, we can apply a Laplacian of Gaussian with to a box function of different widths.

σ

σ = 1

The role of σ

Figure credits: Svetlana Lazebnik

Input signal

"Ripples" with zero-crossings at
the position of edges (we saw
this earlier for edge detection)

Convolve with LoG filter ()σ = 1

Input signal

ripples get closer...

Convolve with LoG filter ()σ = 1

Response

Input signal

And closer...

Convolve with LoG filter ()σ = 1

Response

Input signal

Convolve with LoG filter ()σ = 1

Response

When the scales match, we get
superposition of the ripples to
give a strong negative response.

Blobs and band-pass filtering: example
The size of the blob detected depends on the value of the LoG filter used.

As the sigma is increased, larger and larger image features are detected, ranging from small boxes to entire buildings.

σ

Each time the blob detector will fire on the centre of the blob in question, making it ideal for extracting texture from the
inside of an object or for fixing location of an object in the scene.

The role of σ

Input image

Response

Convolve with LoG filter ()σ = 1 Convolve with LoG filter ()σ = 3 Convolve with LoG filter ()σ = 7 Convolve with LoG filter ()σ = 10Filter operation

Responds to small structures Responds to large structures

Blobs and scales
Responses at different scales

Blobs have a range of scales over which
they will be detected.

The (scale-normalised) Laplacian of a
Gaussian as recorded at a particular
location is a smooth function over scale,
with definite peaks or troughs.

These maxima and minima occur at the
centre of blobs.

These are considered ideal places to
examine the surroundings of the feature
point for use in feature description.

Examples

Convolve with LoG
filter ()σ = 5

Response at the
smallest blob

Input image

Convolve with LoG
filter ()σ = 10

Convolve with LoG
filter ()σ = 20

Convolve with LoG
filter ()σ = 40

Convolve with LoG
filter ()σ = 80

Response at next
larger blob

Response at next
larger blob

Response at next
larger blob

Response at largest
blob

Key takeaway: different values can identify blobs at different scales.σ

A technical detail: the scale-normalised LoG filter

We mentioned that when detecting blobs, we use
a scale-normalised LoG filter. What does this
mean and why is it needed?

The response of a derivative of Gaussian filter to a
perfect step edge decreases as increases.σ

Why do we need to "scale-normalise" the LoG?

Slide content credits: Svetlana Lazebnik

To produce the same response across different values
we must multiply the Gaussian derivative by .

Since the Laplacian is the second derivative of the
Gaussian, it must be multiplied by to scale-normalise:

σ
σ

σ2

When the filter hits the edge,
the response is the integral

of the left peak
1

σ 2π

VisualisationInput signal

Box function
with radius 8

Convolve with unnormalised LoG

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Oh dear, the minimum
is barely visible.

This will make it hard to
select the scale!σ = 8

Convolve with scale-normalised LoG

∇2
normG = σ2 ∇G

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Clear winner! We call the characteristic scaleσ

Selecting the characteristic scale
Core idea

Different scales are ideal for interest points
of different sizes.

The ideal scale for a keypoint (the
characteristic scale1) is the scale
corresponding to the maximum of the
detector response at that point.

For example, with a blob, we would want
to find the maximum of the magnitude of
the scale-normalised Laplacian of a
Gaussian over scale.

The image location of this local max
response gives the blob centre position
whilst the scale, , defines its size. σ

Scale space motivationInput image

Suppose we want to find the
scale of this blob

Convolve with scale-normalised
LoG filter for different valuesσ

(Scale 1) σ = 1 (Scale 2) σ = 7 (Scale 3) σ = 12 (Scale 4) σ = 18

Scale-normalised LoG response at red dot We see a clear maximum near scale 3
()σ = 12

Note: this function is continuous. To
find the exact point and scale of the
blob, a set of discrete scales are
sampled (via an Image Pyramid) and
the maximum is found by
interpolation.

Reference: 1(terminology for characteristic scale) T. Lindeberg, Feature detection with automatic scale selection. International journal of computer vision, 1998

Using scale space to achieve scale invariance
Achieving scale invariance

We saw earlier that can achieve scale invariance
by accurately estimating the scale of a structure,
then normalising.

We now have the tools we need: we can obtain
scale independence by looking at the different
resolutions (low-pass filtered at different scales)
of an image, and selecting the scale that gives
the strongest response.

There are an infinite number of possible
resolutions for any image, which together form a
three-dimensional function of intensity over
location and scale.

This is what is technically known as the scale
space of the image, denoted S(x, y, σ) .

Computing the scale spaceWe can calculate by convolving the
original image with Gaussians of different
scale, , thus the scale space function can be
written as:

where

It is impractical to examine all possible
resolutions, and indeed impossible to do so when
we are restricted by digital image representation.

Thus, we sample the space by choosing
particular resolutions to examine.

Does blurring need to be Gaussian? Yes! Other
kernels can introduce new artefacts at coarser
scales1.

S(x, y, σ)
I(x, y)

σ

S(x, y, σ) = G(x, y, σ) ⊛ I(x, y)

G(x, y, σ) = 1
2πσ2 e−(x+y)2/2σ2

Samples from scale space
 at discrete values of S(x, y, σ) σ

Increasing σ

Reference: 1J. J. Koenderink, "The structure of images". Biological cybernetics, 1984

Blurring smaller images is much cheaper because:

Recall: our image sampling rate should be
(the Nyquist rate) to accurately capture the signal (avoid aliasing).

Each time the scale doubles (i.e. one full octave) in scale space, the
blurring (a low-pass filter) has removed sufficient high frequency
information that we can subsample the image by a factor of 2
without losing information!

≥ 2 × highest frequency

Scale space: computational tricks
Challenge

Computing the full scale space of an image would be
extremely expensive:

•Expensive in computation (many convolutions)

•Expensive in memory (many blurred images to store)

Trick 2: image pyramids

Trick 1: sparse sampling

We produce a discrete set of low-pass filtered images by
smoothing with gaussians with a scale satisfying

so that it doubles after intervals1 (each doubling is referred
to as an octave). The images in each octave are spaced
logarithmically with the scale of neighbouring images
satisfying .

σi = 2 i
sσ0

s
s

σi+i = 21
s σi

Reference: 1(justification for logarithmic spacing) L. M. J. Florack, et al. "Scale and the differential structure of images." Image and vision computing, 1992NE

Each layer of the pyramid
corresponds to one octave.

Example image pyramid with four octaves, s = 3

Downsample by factor of 2

Downsample by factor of 2

Downsample by factor of 2

2. We avoid the use of very large kernels to
compute responses at large scales

1. We process fewer pixels

Scale space: more computational tricks
Trick 3: incremental blurs

Even within octaves, blurring with larger Gaussian kernels is expensive. How can avoid these costly convolutions?

The reproducing property of the Gaussian comes to the rescue:

Given , where , we want to compute , where . From the reproducing
property, we know that for some value of which we can solve for.

G(σ1) ⊛ G(σ2) = G(σ2
1 + σ2

2)
S(x, y, σi) σi = 2 i

sσ0 S(x, y, σi+1) σi+i = 21
s σi

G(σi+1) = G(σi) ⊛ G(σki
) σki

 (reproducing property)

 (by definition)

σki
= σ2

i+1 − σ2
i

σi+1 = 21
s σi

σki
= 22

s σ2
i − σ2

i = σi 22
s − 1

Find incremental blur size

This gives distinct and small incremental
Gaussian (low-pass) filters, , need only be
computed once!

They can be reused in each subsequent octave
but on sub-sampled images to achieve the
larger scales.

s
σki

No large convolutions required!

Scale space: yet more computational tricks
Trick 4: DoG

The Difference of Gaussians filter (or "DoG" as
it is often called), is also a blob detector.

Blobs are found from the minima and maxima
of the DoG response over an image.

It takes its name from the fact that it is
calculated as the difference of two Gaussians,
which approximates the scale-normalised
Laplacian of a Gaussian.

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2 ∇2G(x, y, σ) Comparing the blue and magenta lines, we can
see it's a pretty good approximation!

The DoG approximation

In a system which uses a scale space pyramid, DoG points are very useful
entities, as a response can be computed simply subtracting one member of
a pyramid level from the one directly above it!

Putting it together: efficient scale-invariant keypoint detection

Keypoint locations (the blob centres) are found by first
computing an approximation for the Laplacian of the
Gaussian pyramid by using Difference of Gaussians.

This is done efficiently by subtracting neighbouring images
of same dimension in the Image Pyramid1.

A local search of 26 neighbour responses is required to
determine if a pixel is a blob-centre and to find the scale.

The location of the local maximum/minimum of DoG
response (in image position and over scale) gives the
keypoint location and characteristic scale.

Reference: 1 Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)

The DoG pyramid

Finding keypoints efficiently across scales Finding local extrema

Summary

DoG pyramid allows us to estimate the position and scale
of keypoints efficiently.

In the next lecture, we will see how we can use the
estimated scale to perform scale normalisation to achieve
scale invariance.

End of Image Structures
Lecture 2

Appendix

Slide content credits

Much of the content of these slides is based on material by Roberto Cipolla. For other cases, I have
tried to credit the figures where possible, but finding the original sources can be challenging (useful
figures naturally propagate across many slide decks!) Please let me know if you spot a missing
reference.

Appendix

References: Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey vision conference. 1988

More detailed derivation for Harris Corner Detector: step 3

The Gaussian-weighted distance in the neighbourhood of the patch of the smoothed image is given by:

We can take a Taylor expansion at to yield .

Ignoring higher order terms and substituting, we get that locally:

SSD(x, y) S(x, y)

SSDGaussian(x, y) = ∑
u,v

GσI
(u, v) ⋅ (S(x + u, y + v) − S(u, v))2

S(u, v) S(u, v) = S(u, v) + [x
y] ⋅ ∇S(u, v) + O(∇2S)

SSDGaussian(x, y) ≈ ∑
u,v

GσI
(u, v) ⋅ ([x

y] ⋅ ∇S(u, v))2 = ∑
u,v

GσI
(u, v) ⋅ ([x y]T[

S2
x Sxy

Sxy S2
y][x y])2

