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Recap of last lecture
•The Aperture Problem 

•Cross-correlation (and its role in finding corners) 

•The link between SSD and cross-correlation 

•Corner detection: Moravec and Harris 

•Harris: the det-trace trick 

•Scale invariance (and why its hard to achieve with corners) 

•Blobs (and how to detect them with a LoG filter) 

•Blobs and scales (and the importance of the scale-normalised LoG filter) 

•Selecting the characteristic scale (and the role of scale space) 

•Tricks for efficient scale space calculations (sparse scale sampling, incremental blurs, image pyramids and DoG) 

Summary
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Matching and correspondence
Feature MatchingThe ability to match image structures (i.e. say whether regions from two images capture the 

same underlying object) is an important primitive in computer vision.

Matching enables correspondence

Successful matching enables us to establish correspondences across views: to find pairs of regions for which 
"this bit" in one image matches "that bit" in another.  The ability to find correspondences lies at the heart of computer 
vision, because it allows us to interpret the visual world.

Research trivia: It has been said1 that when a grad student asked Prof. Takeo Kanade "What are the three most important 
problems in computer vision?", Kanade replied: “Correspondence, correspondence, correspondence!”

Images source: Philbin et al. "Object retrieval with large vocabularies and fast spatial matching." CVPR 2007 
Reference: 1Wang et al. "Learning correspondence from the cycle-consistency of time." CVPR, 2019

correspondence

correspondence
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Invariances beyond scale
Rotation invariance

Dog Dog Lemur

In addition to scale invariances, we often also want our 
vision systems to be invariant to rotation. 

Prediction

0°

Invariant across 
these rotations

Not invariant across 
these rotations

-45°45°

Just as in the case of scale invariance, we can achieve 
rotation invariance if we can: 

1. Accurately estimate the rotation of an object 

2. Normalise (i.e. rotate) all objects to a common rotation 

Further challenges for matching

Rotation and scale invariance are very useful, but they are not 
enough on their own, for two reasons.

correspondence

1. We need robustness via additional invariances to factors like 
partial occlusion, and changes in 3D viewpoint and illumination.

2. Too much invariance is bad (a function that maps every 
patch to the zero vector is invariant to everything, but not 
useful)!  We also need to create features that are distinctive.

?

?

Which window from the 
second image matches the 
window in the first image? 

We need distinctive features 
to know the answer.

There is a natural tension between invariance and distinctiveness.
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Strategy: use keypoints and descriptors

Images credit: Venice "Roof", Vedaldi, SIFT tutorial 

Input image

Achieving invariance and distinctiveness 

We will use a two-pronged strategy to achieve invariance and distinctiveness for robust matching. 

Detect keypoints Attach descriptors

•The keypoints enable us to estimate (and therefore normalised and achieve invariance to) scale and rotation. 

•The descriptors enhance distinctivenss, while supporting partial invariance to changes in 3D view, occlusion 
and illumination.
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Keypoints help us efficiently select the subset of points that are "most interesting" to describe



Descriptor: intensity patches
Using raw pixel intensity patches as descriptors

The simplest way to "describe" a patch of  
pixels in an image is just to store the  intensity 
values, .  

You can then compare patches directly using 
(unnormalised) cross-correlation (CC) to find a 
match: 

N
N

P[i]

CC(P1, P2) =
N

∑
i=1

P1[i]P2[i]

original 
image

patch Intensity values

brightness 
decreased

contrast 
increased

The influence of colour changes

CC (cosine) to 
original: 0.26

CC (cosine) to 
original: 0.38

Unnormalised cross-correlation is sensitive to lighting changes, 
so raw intensity patches would not support robust matching 
under this similarity measure.

match score
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Problem: this raw form of description is 
not very robust to changes in lighting.



Zero-normalised patches often can be accurately matched using 
simple cross-correlation.

Zero-Normalised Patches 

Brightness changes are essentially changes in the mean 
brightness value. While the mean changes, the distribution 
of the intensity values around the mean stays the same.  

By giving the intensity values a zero mean, they become 
relatively immune to brightness change:

Descriptor: Zero-Normalised intensity patches

μ =
1
N ∑

x,y

I(x, y) Z(x, y) = I(x, y) − μ

However, the intensity values are still affected by contrast 
changes. A contrast change is essentially a change in the 
variance of the distribution of the intensity values around 
the mean.  

To deal with contrast all that is required is to divide each 
value by the standard deviation of the intensity value 
distribution:

σ2 =
1
N ∑

x,y

Z(x, y)2 ZN(x, y) =
Z(x, y)

σ

zero-normalised patch

original 
image

patch ZN intensity values

brightness 
decreased

contrast 
increased

The influence of colour changes on ZN patches

CC with original 
image: 0.999..

CC with original 
image: 0.97

match score
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Note: The size of the descriptor grows with the size of the patch, and thus 
can be quite big. Even so, while not a data reduction, it is a useful way to 
represent these areas.



Histogram of Oriented Gradients
What about gradients?

If you look at the gradient of each pixel in the patch, 
each will have its own distinct: 

• orientation/direction, or way that it is facing 

•size/strength (gradient magnitude)

Gradient grid

Histograms as descriptors

Reference:  Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)

Gradient histogramThe pixel gradients be binned 
together into a "histogram of 
oriented gradients" (HOG).  

This histogram is built using 
gradients/edges (which are robust 
to contrast and brightness changes) 
and can be detected at different 
scales, and also incorporate 
discriminative orientation data.

These properties makes the histogram a very strong 
candidate, both (1) as a descriptor and (2) for 
estimating the orientation of keypoints. 

Length indicates bin value 
for each orientation
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Dominant Orientations for rotation estimation
Fine-grained HOGs

We can find the dominant 
orientation by looking at the 
histogram of oriented gradients 
at the appropriate low-pass 
filtered image in the Image 
Pyramid.   

We can build a histogram 
(typically with 36 bins covering 
360 degrees) of all of the edge 
orientations weighted by their 
gradient magnitudes in the 
neighbourhood of the keypoint.  

Note: this needs to be 
smoothed (low-pass filtered 
with a 2D gaussian of size 1.5  
scale for the keypoint). 

σ

Finding the dominant orientation

The highest peak in the histogram will approximate the dominant orientation. 
We can use this orientation to estimate the rotation of a keypoint, and then 
normalise to achieve rotation invariance. 

Note: a better estimate can be found through interpolation (by fitting a parabola 
to the values of the bin and its two neighbours).

If there is no clear maximum, then the keypoint is given several dominant 
orientations (i.e. several copies of the keypoint with different orientations are 
used.)  

Orientation histogram

Clear maximum

Dominant orientation example

Dominant orientation
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The SIFT keypoint descriptor
The SIFT keypoint descriptor

SIFT stands for Scale-Invariant Feature Transform. It uses a collection of orientation histograms to create a robust and descriptive 
representation of a patch. 

This  patch (typically, ) is extracted at the scale of the keypoint, and its gradient orientations are stored relative to 
the dominant orientation of the keypoint, making the overall descriptor scale invariant and rotation invariant. 

N × N N = 16

SIFT details

Image gradients Keypoint descriptor4x4 pixels form 
one cell.

The  patch is split into  cells (typically 
with  pixels in each cell) and the directions 
are binned into a histogram weighted by 
their magnitude and a Gaussian window 
with a  of 0.5 times the scale of the 
keypoint at the centre of the patch. 

The Gaussian weights the inner pixels (those 
closer to the keypoint) to minimise the 
influence of partial occlusions.

N × N c
N

σ

10Reference:  Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)



The SIFT keypoint descriptor - more details
Further SIFT details

Descriptor size: If the bins are centred on  directions (typically 8) in each of  cells 
(typically 16), the resulting descriptor is a  vector (typically 128D).  

Robustness: By dividing the patch into cells, a particular gradient can move around to 
some degree within the descriptor window and still contribute to the same directional 
histogram. 

Normalisation: Once the  vector has been extracted, it is L2-normalised to 
provide invariance to gradient magnitude change. 

Truncation: One final step is performed to help minimise the effects of non-affine 
lighting changes: the values are truncated so that all values in the unit vector are less than 
0.2 (to reduce the effect of single elements such as those coming from very strong 
specular highlights) and then renormalising. 

d c
d × c

d × c
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Keypoint and Descriptor Framework Overview
Framework overview

Finally, we can then compute an appropriate 
descriptor for each feature by either raw or 
normalised intensities, edges or the Scale Invariant 
Feature Transform (SIFT).
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Input image

1. Create octaves of differently scaled copies

1.1 Incremental Gaussian blurs

1.2 Downsample by factor of 2

Blur 1

Blur 2

2. Compute DoG 
within each octave

DoGExtrema

3. Select keypoint 
scales from extrema

4. Find gradients and 
select dominant orientation

5. Compute 
descriptor 

from gradient 
orientation 
histograms

To produce a descriptor which is invariant to scale 
(and location) we first normalise for scale in the 
image (by sampling image intensities at the 
appropriate level of the image pyramid).

We can then normalise for orientation (by sampling 
pixels after computing a characteristic reference/
dominant orientation for the patch of pixels using a 
histogram of gradients). 

Finding Keypoint Scale and location

Finding Keypoint Orientation

Computing the Feature Descriptor



Matching features over multiple views
Finding correspondences

We can use our design of keypoints and their 
descriptors to build a system to recognise a target 
object (specified by a reference image) from another 
viewpoint (query image): 

A

Reference images Extract keypoints 
and descriptors

Database

Q

Query image

Extract keypoints 
and descriptors

B C A C
B

A B C

Result: A

Best matches

Matching descriptors

A good match is usually defined as one which is a small 
distance away in feature descriptor space (  for 
SIFT) as measured by Euclidean distance, :

d = 128
E(x, y)

E(x, y) =
d

∑
i=1

(xi − yi)2

One way of solving the correspondence problem is to 
search through all the keypoint descriptors in the database 
images for the best match of a query feature.  

Data structures can be used to organise data such that it 
is more efficient to store, access and search.  

The simplest data structure is a list of items, such as an 
array of numbers, traversed with linear search. Another 
solution is to use tree-based data structures such as k-d 
trees to tackle the problem of nearest neighbour retrieval. 
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End of Image Structures 
Lecture 3

14


