
Instructor: Samuel Albanie
Based on course material authored by Roberto Cipolla

Image Structure 3
Feature Detection and Matching
4F12: Computer Vision

NE Tag = Non Examinable

VE Tag = Very Examinable

1

Recap of last lecture
•The Aperture Problem

•Cross-correlation (and its role in finding corners)

•The link between SSD and cross-correlation

•Corner detection: Moravec and Harris

•Harris: the det-trace trick

•Scale invariance (and why its hard to achieve with corners)

•Blobs (and how to detect them with a LoG filter)

•Blobs and scales (and the importance of the scale-normalised LoG filter)

•Selecting the characteristic scale (and the role of scale space)

•Tricks for efficient scale space calculations (sparse scale sampling, incremental blurs, image pyramids and DoG)

Summary

2

Matching and correspondence
Feature MatchingThe ability to match image structures (i.e. say whether regions from two images capture the

same underlying object) is an important primitive in computer vision.

Matching enables correspondence

Successful matching enables us to establish correspondences across views: to find pairs of regions for which
"this bit" in one image matches "that bit" in another. The ability to find correspondences lies at the heart of computer
vision, because it allows us to interpret the visual world.

Research trivia: It has been said1 that when a grad student asked Prof. Takeo Kanade "What are the three most important
problems in computer vision?", Kanade replied: “Correspondence, correspondence, correspondence!”

Images source: Philbin et al. "Object retrieval with large vocabularies and fast spatial matching." CVPR 2007
Reference: 1Wang et al. "Learning correspondence from the cycle-consistency of time." CVPR, 2019

correspondence

correspondence

3

Invariances beyond scale
Rotation invariance

Dog Dog Lemur

In addition to scale invariances, we often also want our
vision systems to be invariant to rotation.

Prediction

0°

Invariant across
these rotations

Not invariant across
these rotations

-45°45°

Just as in the case of scale invariance, we can achieve
rotation invariance if we can:

1. Accurately estimate the rotation of an object

2. Normalise (i.e. rotate) all objects to a common rotation

Further challenges for matching

Rotation and scale invariance are very useful, but they are not
enough on their own, for two reasons.

correspondence

1. We need robustness via additional invariances to factors like
partial occlusion, and changes in 3D viewpoint and illumination.

2. Too much invariance is bad (a function that maps every
patch to the zero vector is invariant to everything, but not
useful)! We also need to create features that are distinctive.

?

?

Which window from the
second image matches the
window in the first image?

We need distinctive features
to know the answer.

There is a natural tension between invariance and distinctiveness.
4

Strategy: use keypoints and descriptors

Images credit: Venice "Roof", Vedaldi, SIFT tutorial

Input image

Achieving invariance and distinctiveness

We will use a two-pronged strategy to achieve invariance and distinctiveness for robust matching.

Detect keypoints Attach descriptors

•The keypoints enable us to estimate (and therefore normalised and achieve invariance to) scale and rotation.

•The descriptors enhance distinctivenss, while supporting partial invariance to changes in 3D view, occlusion
and illumination.

5

Keypoints help us efficiently select the subset of points that are "most interesting" to describe

Descriptor: intensity patches
Using raw pixel intensity patches as descriptors

The simplest way to "describe" a patch of
pixels in an image is just to store the intensity
values, .

You can then compare patches directly using
(unnormalised) cross-correlation (CC) to find a
match:

N
N

P[i]

CC(P1, P2) =
N

∑
i=1

P1[i]P2[i]

original
image

patch Intensity values

brightness
decreased

contrast
increased

The influence of colour changes

CC (cosine) to
original: 0.26

CC (cosine) to
original: 0.38

Unnormalised cross-correlation is sensitive to lighting changes,
so raw intensity patches would not support robust matching
under this similarity measure.

match score

6

Problem: this raw form of description is
not very robust to changes in lighting.

Zero-normalised patches often can be accurately matched using
simple cross-correlation.

Zero-Normalised Patches

Brightness changes are essentially changes in the mean
brightness value. While the mean changes, the distribution
of the intensity values around the mean stays the same.

By giving the intensity values a zero mean, they become
relatively immune to brightness change:

Descriptor: Zero-Normalised intensity patches

μ =
1
N ∑

x,y

I(x, y) Z(x, y) = I(x, y) − μ

However, the intensity values are still affected by contrast
changes. A contrast change is essentially a change in the
variance of the distribution of the intensity values around
the mean.

To deal with contrast all that is required is to divide each
value by the standard deviation of the intensity value
distribution:

σ2 =
1
N ∑

x,y

Z(x, y)2 ZN(x, y) =
Z(x, y)

σ

zero-normalised patch

original
image

patch ZN intensity values

brightness
decreased

contrast
increased

The influence of colour changes on ZN patches

CC with original
image: 0.999..

CC with original
image: 0.97

match score

7

Note: The size of the descriptor grows with the size of the patch, and thus
can be quite big. Even so, while not a data reduction, it is a useful way to
represent these areas.

Histogram of Oriented Gradients
What about gradients?

If you look at the gradient of each pixel in the patch,
each will have its own distinct:

• orientation/direction, or way that it is facing

•size/strength (gradient magnitude)

Gradient grid

Histograms as descriptors

Reference: Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)

Gradient histogramThe pixel gradients be binned
together into a "histogram of
oriented gradients" (HOG).

This histogram is built using
gradients/edges (which are robust
to contrast and brightness changes)
and can be detected at different
scales, and also incorporate
discriminative orientation data.

These properties makes the histogram a very strong
candidate, both (1) as a descriptor and (2) for
estimating the orientation of keypoints.

Length indicates bin value
for each orientation

8

Dominant Orientations for rotation estimation
Fine-grained HOGs

We can find the dominant
orientation by looking at the
histogram of oriented gradients
at the appropriate low-pass
filtered image in the Image
Pyramid.

We can build a histogram
(typically with 36 bins covering
360 degrees) of all of the edge
orientations weighted by their
gradient magnitudes in the
neighbourhood of the keypoint.

Note: this needs to be
smoothed (low-pass filtered
with a 2D gaussian of size 1.5
scale for the keypoint).

σ

Finding the dominant orientation

The highest peak in the histogram will approximate the dominant orientation.
We can use this orientation to estimate the rotation of a keypoint, and then
normalise to achieve rotation invariance.

Note: a better estimate can be found through interpolation (by fitting a parabola
to the values of the bin and its two neighbours).

If there is no clear maximum, then the keypoint is given several dominant
orientations (i.e. several copies of the keypoint with different orientations are
used.)

Orientation histogram

Clear maximum

Dominant orientation example

Dominant orientation

9

The SIFT keypoint descriptor
The SIFT keypoint descriptor

SIFT stands for Scale-Invariant Feature Transform. It uses a collection of orientation histograms to create a robust and descriptive
representation of a patch.

This patch (typically,) is extracted at the scale of the keypoint, and its gradient orientations are stored relative to
the dominant orientation of the keypoint, making the overall descriptor scale invariant and rotation invariant.

N × N N = 16

SIFT details

Image gradients Keypoint descriptor4x4 pixels form
one cell.

The patch is split into cells (typically
with pixels in each cell) and the directions
are binned into a histogram weighted by
their magnitude and a Gaussian window
with a of 0.5 times the scale of the
keypoint at the centre of the patch.

The Gaussian weights the inner pixels (those
closer to the keypoint) to minimise the
influence of partial occlusions.

N × N c
N

σ

10Reference: Lowe, David G. "Distinctive image features from scale-invariant keypoints." IJCV (2004)

The SIFT keypoint descriptor - more details
Further SIFT details

Descriptor size: If the bins are centred on directions (typically 8) in each of cells
(typically 16), the resulting descriptor is a vector (typically 128D).

Robustness: By dividing the patch into cells, a particular gradient can move around to
some degree within the descriptor window and still contribute to the same directional
histogram.

Normalisation: Once the vector has been extracted, it is L2-normalised to
provide invariance to gradient magnitude change.

Truncation: One final step is performed to help minimise the effects of non-affine
lighting changes: the values are truncated so that all values in the unit vector are less than
0.2 (to reduce the effect of single elements such as those coming from very strong
specular highlights) and then renormalising.

d c
d × c

d × c

11

Keypoint and Descriptor Framework Overview
Framework overview

Finally, we can then compute an appropriate
descriptor for each feature by either raw or
normalised intensities, edges or the Scale Invariant
Feature Transform (SIFT).

12

Input image

1. Create octaves of differently scaled copies

1.1 Incremental Gaussian blurs

1.2 Downsample by factor of 2

Blur 1

Blur 2

2. Compute DoG
within each octave

DoGExtrema

3. Select keypoint
scales from extrema

4. Find gradients and
select dominant orientation

5. Compute
descriptor

from gradient
orientation
histograms

To produce a descriptor which is invariant to scale
(and location) we first normalise for scale in the
image (by sampling image intensities at the
appropriate level of the image pyramid).

We can then normalise for orientation (by sampling
pixels after computing a characteristic reference/
dominant orientation for the patch of pixels using a
histogram of gradients).

Finding Keypoint Scale and location

Finding Keypoint Orientation

Computing the Feature Descriptor

Matching features over multiple views
Finding correspondences

We can use our design of keypoints and their
descriptors to build a system to recognise a target
object (specified by a reference image) from another
viewpoint (query image):

A

Reference images Extract keypoints
and descriptors

Database

Q

Query image

Extract keypoints
and descriptors

B C A C
B

A B C

Result: A

Best matches

Matching descriptors

A good match is usually defined as one which is a small
distance away in feature descriptor space (for
SIFT) as measured by Euclidean distance, :

d = 128
E(x, y)

E(x, y) =
d

∑
i=1

(xi − yi)2

One way of solving the correspondence problem is to
search through all the keypoint descriptors in the database
images for the best match of a query feature.

Data structures can be used to organise data such that it
is more efficient to store, access and search.

The simplest data structure is a list of items, such as an
array of numbers, traversed with linear search. Another
solution is to use tree-based data structures such as k-d
trees to tackle the problem of nearest neighbour retrieval.

13

End of Image Structures
Lecture 3

14

