
Euclidean Distance Matrix Trick

Samuel Albanie
Visual Geometry Group

University of Oxford
albanie@robots.ox.ac.uk

June, 2019

Abstract

This is a short note discussing the cost of computing Euclidean Distance Matrices.

1 Computing Euclidean Distance Matrices

Suppose we have a collection of vectors {xi ∈ Rd : i ∈ {1, . . . , n}} and we want to compute the
n × n matrix, D, of all pairwise distances between them. We first consider the case where each
element in the matrix represents the squared Euclidean distance (see Sec. 3 for the non-square case)1,
a calculation that frequently arises in machine learning and computer vision. The distance matrix is
defined as follows:

Dij = ||xi − xj ||22 (1)

or equivalently,

Dij = (xi − xj)
T (xi − xj) = ||xi||22 − 2xT

i xj + ||xj ||22 (2)

There is a popular “trick” for computing Euclidean Distance Matrices (although it’s perhaps more of
an observation than a trick). The observation is that it is generally preferable to compute the second
expression, rather than the first2.

Writing X ∈ Rd×n for the matrix formed by stacking the collection of vectors as columns, we
can compute Eqn. 1 by creating two views of the matrix with shapes of d × n × 1 and d × 1 × n
respectively. In libraries such as numpy,PyTorch,Tensorflow etc. these operations are essentially
free because they simply modify the meta-data associated with the matrix, rather than the underlying
elements in memory. We then compute the difference between these reshaped matrices, square all
resulting elements and sum along the zeroth dimension to produce D, as shown in Algorithm 1.

Algorithm 1: Naive computation of Euclidean distance matrix

Input: X ∈ Rd×n

A← reshape(X, (d, n, 1))
B ← reshape(X, (d, 1, n))
C ← A−B ∈ Rd×n×n

D ← 1T
d C

Totals

Storage
d× n
-
-
d× n× n
n× n
n2(d+ 1) + nd

MACs
-
-
-
d× n× n
d× n× n
2dn2

1The term Euclidean Distance Matrix typically refers to the squared, rather than non-squared distances [1].
2It’s mentioned, for example, in the metric learning literature, e.g. [2].

Note that the computation of C assumes that the matrix library will perform broadcasting, which
implicitly forms A and B as d × n × n matrices by repeating their elements along the singleton
dimension, without allocating the memory for these expansions. However, memory is required for
storing the result of the operation. To estimate the computational cost, we count the number of MACs
(Multiply-Accumulate ops) required for each operation.

The alternative approach, which corresponds to computing the the expanded formula given in Eqn. 2,
is given in Algorithm 2.

Algorithm 2: Expanded computation of Euclidean distance matrix

Input: X ∈ Rd×n

G← XTX ∈ Rn×n

D ← diag[G]+diag[G]T −2G
Totals

Storage
d× n
n× n
n× n
2n2 + dn

MACs
-
d× n× n
2× n× n
n2(d+ 2)

The matrix G here is often referred to as the Gram matrix, and the diag[G] operation simply selects
the diagonal elements from G and stores them into an n× 1 vector (we again use broadcasting in the
final line to sum the vectors into a square).

Observations: There is an important different in the storage costs: in Algorithm 1, the n2d term
required to store the tensor representing all pairwise distance vectors can often become prohibitively
large in practice. Moreover, for almost all values of n and d the first algorithm requires approximately
twice as many MACs.

2 Non-Squared Euclidean Distance Matrices

Regardless of which algorithm is used, simply square root the matrix entries element-wise (n× n
operations).

3 Numerical Stability

There are a couple of slight numerical challenges which it pays to be aware of when computing these
matrices.

Negative Distances: It is possible (when using Algorithm 2) to get negative values in the matrix
due to a lack of floating point precision. This is readily fixed by simply clamping each value to be
non-negative: Dij ← max(0, Dij).

Backpropagation Challenges: When the non-squared (rather than squared) matrix of distances is
desired and the objective is not only to compute the distance matrix, but also to differentiate through
its elements (e.g. as done in backpropagation), some care is required (particularly when using an
Automatic Differentiation toolbox).

The issue stems from the element-wise square rooting operation. Since d(
√
x) = 1

2
√
x
dx, any zero

values in the distance matrix will produce infinite gradients. This is encountered, for example, when
implementing a contrastive loss [3] (see [4] for details). It can be addressed by adding a small value to
matrix values immediately prior to performing the square root. The choice of value here is somewhat
arbitrary [5], but depends on the floating point being used e.g. 10−16 for double precision.

References
[1] Jon Dattorro. Convex optimization & Euclidean distance geometry. Lulu. com, 2010.

[2] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4004–4012, 2016.

2

[3] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invari-
ant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006.

[4] Implementation of contrastive loss. https://leimao.github.io/article/
Siamese-Network-MNIST. Accessed: 2019-06.

[5] Tom Murphy VII. What, if anything, is epsilon? In Conference in Celebration of Harry Q.
Bovik’s 26th Birthday, 2014.

3

https://leimao.github.io/article/Siamese-Network-MNIST
https://leimao.github.io/article/Siamese-Network-MNIST

	Computing Euclidean Distance Matrices
	Non-Squared Euclidean Distance Matrices
	Numerical Stability

