
Up-To-Date Malaria Mapping: Prediction From
Remote Imagery

Samuel Albanie
Dept. of Engineering

Oxford University

Stephen Roberts
Dept. of Engineering

Oxford University

Abstract—The creation of accurate, up-to-date malaria maps
remains a key challenge in combatting the global threat posed
by the presence of the disease. With limited up-to-date local site
data available, the best use must be made of climate and human
population information that has become available in near real-
time through remote sensing techniques. In the past two decades,
health surveys have gathered data on the prevalence of the deadly
plasmodium falciparum (pf.) malaria parasite in a number of
countries battling the disease. In this paper, prevalence datasets
are used in combination with climate and human population
data to investigate relationships between environmental factors
and malaria prevalence. These relationships are then used to
guide the development of Gaussian Process models for malaria
prevalence prediction across three countries: Cambodia, Somalia
and Mozambique. Finally, it is shown that vegetation volatility
can be engineered as a simple feature to improve the accuracy
of predictive models based on environmental data.

I. INTRODUCTION

With an estimated 584,000 deaths caused by the disease
globally in 2013 [33], the battle against malaria represents a
significant health challenge. Malaria is both preventable and
curable and it can be combatted effectively when preventative
measures and treatment are provided where they are needed
in a timely manner. For resources to be deployed effectively,
accurate and up-to-date mapping of the disease is in great
demand.

Malaria is most prevalent in many of the less economically
developed regions of the world where accurate data about
the distribution of Anopheles (the malaria carrying mosquito)
populations is scarce. In contrast, measurements of other
factors such as human population density and environmental
variables (humidity, air temperature, cloud cover etc.) are
readily available at high spatial resolutions across the globe
through the use of satellite-based remote sensing techniques
[5] but the relationships between these variables and malaria
prevalence are complex and can vary from region to region.
For areas in which the cost of making regular measurements
of mosquito populations (a process which involves the use of
fly traps and extensive human labour) is prohibitive, accurate
malaria mapping requires localized models that take account
of these changing relationships.

In this work, Gaussian Process Regression is used to
develop environment- and population density-based models for
the prevalence of the plasmodium falciparum malaria parasite
in three countries with high clinical burdens: Cambodia, Soma-
lia and Mozambique. Next, the strengths of the relationships
between malaria prevalence and various environmental factors

are investigated using straightforward correlation analysis and
Automatic Relevance Determination kernels. Finally, vegeta-
tion volatility is incorporated as an additional feature into the
GP models yielding improvements in predictive accuracy.

II. RELATED WORK

Climatic and environmental factors have received signifi-
cant attention as potential indicator signals for the prevalence
of malaria. Early work used rainfall, temperature records
and the Normalized Difference Vegetation Index (NDVI) to
forecast monthly malaria cases with a degree of success
[11]. It was found that in certain regions malaria epidemics
were often preceded by periods of abnormally high minimum
temperatures [1] indicating the potential of temperature as
a predictor variable. For this reason, the impact of global
warming on malaria endemicity was investigated in [9] which
concluded that while temperature is a relevant factor, it has less
influence on malaria prevalence than interventions by health
organizations. Strong correlations were found between peak
rainfall and peak malaria incidence two to three months later
in [15]. Other factors that have been considered as potential
predictors of malaria prevalence include the presence of village
health workers [19], immunological factors and migration [28].
An extensive review and categorization of malaria forecasting
research is provided in [36].

Prediction and interpolation models based on Gaussian
Processes regression have become popular for working with
geographical information because they work naturally with
spatial data and allow the confidence of model predictions to be
estimated [27]. These models have been applied to the problem
of malaria mapping and shown to offer improved prevalence
interpolation over conventional logistic regression models at
a local level [16]. The Gaussian Process framework can also
be extended to include other types of information at different
spatial and temporal resolutions as inputs to the model by using
appropriate covariance structures [25].

Much of the literature has focused on the problem of
predicting malaria prevalence in a single country or region. In
this work, prediction models are developed in tandem for three
countries to facilitate an investigation of geographical variation
in the influences of different environmental covariates. Feature
engineering remains underdeveloped in previous research and
is investigated here as a possible approach to improve the
predictive accuracy of the environment-based models.
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Fig. 1: Plasmodium falciparum survey locations, 2000-2014

III. DATA

A. Malaria prevalence surveys

The prevalence data consists of surveys of the plasmodium
falciparum malaria parasite across Cambodia [14] [6] [12]
[7], Somalia [26] [31] [34] and Mozambique [18] [8] taken
between 2000 and 2014. The locations of these surveys are
illustrated in Figure 1. It is worth noting that the surveys are
far from uniformly distributed and are considerably sparser
in Cambodia than in Somalia. In total, 220 surveys were con-
ducted in Cambodia, 1591 in Somalia and 475 in Mozambique.
Note that the number of surveys does in each country does
not necessarily indicate the severity of malaria in that region,
as demonstrated by Table I (Mozambique has a significantly
higher incidence rate but far fewer surveys than Somalia).

B. Population Density Data

Population density data for each country is derived from
the 2010 worldpop maps for Cambodia [35], Somalia and
Mozambique [17] (and adjusted to meet UN estimates). These
values are then scaled using the world bank annual estimates
of the populations of each country between 2000 and 2014 [3].

C. Environmental Data

The environmental factors used in the models comprise
four datasets: Enhanced Vegetation Index (EVI) [13] [21], air
temperature [30] [20], cloud cover [2] [23], and the ratio
of actual evapotranspiration to potential evapotranspiration
(AET:PET ratio) [24] [22]. The Enhanced Vegetation Index is a
measure of the vegetation in a region. Cloud cover is a measure
of the portion of the sky occluded by clouds and is commonly
used as a proxy for relative insolation. Air temperature refers
to average monthly temperature at the surface (measured in
degrees Celsius) and AET:PET ratio is used as a measure of
aridity. EVI, cloud cover and AET:PET ratio take real values
between 0 and 1. Each of the datasets consist of monthly time-
series from 2000 to 2014 at 0.05 degree resolution.

1World Bank 2013 midyear estimates[3]
2Reported confirmed cases, WHO World Malaria Report [32]

Country Population (million)1 Land Area (km2) Malaria cases 2

Cambodia 15.14 181,000 21,309
Mozambique 25.83 802,000 2,998,874
Somalia 10.5 638,000 10,470

TABLE I: Country statistics

IV. METHODS

A. Gaussian Processes Regression

Gaussian Process Regression (GPR) is a form of super-
vised learning that fits a Gaussian Process to a collection
of inputs {xn} and targets {tn}. A Gaussian Process (GP)
is defined as a collection of random variables, any finite
number of which have a joint Gaussian distribution [29]. A
GP, GP(µ(x),K(x,x′)), is uniquely determined by its mean
function µ(x) and its covariance function K(x,x′) which are
defined for a real process g(x) by:

µ(x) = E [g(x)] (1)

K(x,x′) = E [(g(x)− µ(x))(g(x′)− µ(x′))] (2)

The choice of covariance function has a significant influ-
ence on the character of the resulting process and its response
to any discontinuities that may occur in the data. A popular
choice of covariance function is the RBF kernel given by
K(x,x′) = exp(−c||x−x′||). By working with vector inputs
the GP can combine multiple input variables (such as spatial
information and environmental factors) to produce a predicted
target variable value (in this case, malaria prevalence).

A measure of the predictive quality of each environmental
factor can be determined by training and evaluating single-
input GPs on each dataset. However, a more informative
evaluation of the relative importance of each of variables
can be obtained using Automatic Relevance Determination
(ARD) [4]. This is achieved using an augmented kernel [10]
(continuing with the RBF kernel as an example):



K(x,x′) = exp

[
−

d∑
a=1

(xa − x′a)2

2l2a

]
(3)

where d is the number of input dimensions and each
dimension a separate lengthscale la. These lengthscales are
then tuned as part of the process of hyperparameter optimisa-
tion. Inputs which exert greater predictive influence are given
shorter lengthscales and the regression function is then more
sensitive to data in the dimension of that input.

V. CORRELATION ANALYSIS

Prior to developing prediction models, it is useful to
explore the data for potential monotonic or linear relationships
between each of the input variables and malaria prevalence. us-
ing Spearman’s rank and Pearson product-moment correlation
coefficients. The correlation coefficients and corresponding p-
values for the most significant correlations (p-value less than
0.05) are given in Table II.

Cambodia

Factor Spearman p-value Pearson p-value

AET:PET(t) 0.363 4.27 · 10−7 0.209 0.004
Pop density -0.353 9.65 · 10−7 -0.187 0.011
Temp(t− 1) -0.319 1.061 · 10−5 -0.278 0.0001
EVI(t) 0.270 0.0002 0.240 0.001
EVI(t− 1) 0.269 0.0002 0.260 0.0004

Somalia

Factor Spearman p-value Pearson p-value

AET:PET(t− 3) 0.260 1.96 · 10−14 0.289 1.43 · 10−17

EVI(t− 3) 0.219 1.46 · 10−10 0.239 2.41 · 10−12

Mozambique

Factor Spearman p-value Pearson p-value

Pop density -0.238 2.55 · 10−6 -0.22 1.45 · 10−5

EVI(t) 0.235 3.28 · 10−6 0.204 5.56 · 10−5

EVI(t− 1) 0.226 7.81 · 10−6 0.212 2.80 · 10−5

EVI(t− 2) 0.231 4.94 · 10−6 0.215 3.00 · 10−5

AET:PET(t) 0.239 2.25 · 10−6 0.228 6.83 · 10−5

TABLE II: Correlation coefficients for input variables. An
index of (t−i) indicates the value of the environmental variable
i months prior to the event of the parasite prevalence survey.

Interestingly, the composition of variables that exhibit
correlation with prevalence is very different in each country.
It was noted in previous studies that rainfall two to three
months prior to the parasite survey correlated with malaria
prevalence and this appears to be supported by the results for
Somalia in which the most significant relationships were with
EVI and AET:PET ratio (proxies for vegetation and humidity)
time-lagged by three months. However, very different factors
emerge as significant for Cambodia and Mozambique, in
particular population density which has not received as much
attention in the literature. While no single factor exhibits a
particularly strong correlation with malaria prevalence, it is
promising that in each country multiple variables are signfi-
cantly weakly correlated with the target variable.

The correlation coefficients can now be compared to the
results of fitting an ARD kernel to the data, shown in Table III.

The factors are ranked in order of shortest lengthscale (most
relevant) for each country. For comparison, random noise is
also included as an input (any factor which is relevant should
have a lengthscale significantly shorter than the lengthscale
selected for the noise).

For Cambodia, cloud cover from the previous month proves
to be the most relevant factor in a manner that appears at odds
with the correlation values. However, we see from Figure 2 that
while there is a pattern present in the data, the relationship
is neither linear or monotonic (as a consequence of the wet
and dry seasons in Cambodia) and so this relationship does
not appear in the correlation analysis. Furthermore, in contrast
to the correlation values population density is almost com-
pletely disregarded as irrelevant by the GP in both Cambodia
and Mozambique with lengthscales much larger than those
generated by random noise inputs. Despite these outcomes,
there is agreement on the importance of other factors such as
EVI(t−1). Somalia produces more consistent results with both
AET:PET(t−3) and EVI(t−3) viewed as relevant by the ARD
kernel.

Cambodia

Factor Lengthscale Factor Lengthscale

Clouds(t− 1) 0.08 EVI(t) 11.648
EVI(t− 2) 0.511 AET:PET(t) 13.271
EVI(t− 1) 0.570 Random Noise 26.010
EVI(t− 3) 4.320 Pop density 358.134

Somalia

Factor Lengthscale Factor Lengthscale

AET:PET(t− 3) 0.313 Clouds(t− 1) 0.802
Clouds(t− 2) 0.513 Clouds(t) 1.233
EVI(t− 3) 0.794 Random Noise 24.093

Mozambique

Factor Lengthscale Factor Lengthscale

Clouds(t− 3) 0.362 AET:PET(t− 2) 0.948
AET:PET(t) 0.499 AET:PET(t− 3) 3.804
AET:PET(t− 1) 0.611 Random Noise 53.942
EVI(t− 1) 0.670 Pop density 1407.969

TABLE III: ARD lengthscales for input variables

In summary, it is clear from both the correlation analysis
and ARD kernels that each country will need a model with
carefully tailored inputs to be effective in forming accurate
predictions.

Fig. 2: Cloud cover vs. pf. prevalence, Cambodia, 2000-2014



VI. PREVALENCE PREDICTION

To evaluate models, 40% of the data in each of the
three countries was held out for testing and the remaining
60% was used for training. The first predictive models were
developed using individual environmental factors. It was noted
in previous work [15] that there is often a lag of two to three
months between an environmental factor and a corresponding
change in malaria levels. Consequently, measurements of the
three months of the variable up to (and including) the month
in which the survey was taken are provided as inputs to a
Gaussian Process. Of the several forms of covariance function
that were considered, the Matérn family of kernels often
performed best, perhaps due to the sharply varying nature of
the malaria prevalence data. The performance (measured in
terms of Normalized Root-Mean-Square-Error) of GP predic-
tors trained on individual environmental factors is given in
Table IV.

Country Air Temp Cloud Cover AET:PET EVI Pop Density

Cambodia 0.220 0.204 0.224 0.218 0.231
Somalia 0.154 0.150 0.150 0.155 0.165
Mozambique 0.243 0.241 0.249 0.253 0.263

TABLE IV: NMRSE scores for individual predictive factors

Cloud cover proves to be the most useful individual factor
for making predictions across each of the three countries
(jointly with AET:PET for Somalia). Unsurprisingly, these
results align much more closely with the ARD kernel rankings
of relevance than the correlation analysis (recalling that the
cloud cover data was neither linear nor monotonic).

A. Fused Factors

Instead of building models around environmental factors,
an alternative approach is to fuse these together as grouped
inputs to the GP. Three techniques were used to combine
factors:

All - combines the locations of the surveys, population
density and the three month history of each environ-
mental variable.

TopCor - combines the locations of the surveys with the
factors that exhibited the strongest correlation with
prevalence.

TopARD - combines the locations of the surveys with the
factors that were ranked as most relevant by the ARD
kernels.

For comparison, a benchmark prediction score is calculated
using multivariate polynomial regression over the survey loca-
tions. The order of the polynomial was optimised using 5-fold
cross validation on the training data. The predictive accuracies
of the fused models and the benchmark prediction models are
given in Table V.

The most accurate models were those formed by combining
the factors ranked as most relevant by the ARD kernels. The
improvement in accuracy is significant for Cambodia, but is
no better than using the best individual factor in Somalia. A
small improvement of the benchmark predictor is achieved in
Mozambique. Combining all possible factors and using them

Country Single Poly ALL TopCorr TopARD

Cambodia 0.204 0.179 0.206 0.207 0.157
Somalia 0.150 0.157 0.164 0.151 0.150
Mozambique 0.241 0.238 0.253 0.249 0.234

TABLE V: Comparison of NMRSE scores for factor combina-
tions. Poly represents the multivariate polynomial regression
predictions. Simple represents the best scores achieved by a
single factor model.

as inputs to a GP does not perform well, perhaps because there
is not enough data to be effective in the higher number of input
dimensions.

B. Volatility

The previous results suggest that the GP is not making
sense of all the available raw data. It is possible that it will
make better sense of more abstract representations of the data.
One approach is to use the ”volatility” of an environmental
factor as an input. Define the volatility of an environmental
factor, ENV (t), as:

Vol(ENV) =

{
1 if 1

3

∑2
i=0 Diff(ENV, i) > AvgDiff(ENV)

0 if otherwise
(4)

where we define AvgDiff(ENV) to be the average of the
absolute differences between time lagged values of the ENV
variable over all training values and the Diff(·) function is
defined by:

Diff(ENV, i) = |ENV(t− i)− ENV(t− (i+ 1))| (5)

The intuition behind this feature is that rapidly changing
environmental factors might make it more difficult for the
mosquito populations that carry the .pf parasite to survive.

Country TopARD TopARD + Vol(AET:PET)

Cambodia 0.157 0.156
Somalia 0.150 0.150
Mozambique 0.234 0.227

TABLE VI: NMRSE scores for volatility

Of the four possible environmental factors, AET:PET
volatility as a factor yielded improvements in predictive accu-
racy for Cambodia and Mozambique when combined with the
TopARD features (see VI) and did not affect the performance
of TopARD in Somalia.

VII. CONCLUSION

Predictive models based on environmental factors and
population density have been presented for three different
countries. The relationships between these factors and preva-
lence were often not monotonic or linear as evidenced by
the disparity between the results of correlation analysis and
ARD kernel feature selection. In each country, cloud cover
offered the best performance as an individual factor, but



improvements were found by combining the top ranked ARD-
selected features as inputs. This led to improvements in
predictive accuracy over a benchmark model that did not
incorporate environmental or population density data. Further
improvements were achieved by including AET:PET volatility
as a feature, possibly indicating that this has an impact on
the mosquito population. In future work, more sophisticated
representations could be combined with new streams of remote
imagery to improve performance further.
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