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Motivation
Natural language supervision

ScaleFlexibility

Reference/Image credits: A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

(VirTex) K. Desai and J. Johnson, "Virtex: Learning visual representations from textual annotations", CVPR (2021)

(ConVIRT) Y. Zhang, H. Jiang, Y. Miura, C. Manning and C. P. Langlotz, "Contrastive learning of medical visual representations from paired images and text", arXiv (2020) 

C. Raffel, et al., "Exploring the limits of transfer learning with a unified text-to-text transformer", JMLR (2019) 

T. Brown et al., "Language models are few-shot learners", NeurIPS (2020)

Traditional computer vision systems are trained with 

a fixed set of predetermined object categories.


This limits their flexibility: each time we encounter a 

new visual concept, we need to retrain the model 

with labelled examples of this concept.

Prior works have shown that learning from descriptions 

rather than fixed labels can be very data efficient.


VirTex demonstrated data efficiency of captioning.

ConVIRT showed data efficiency of contrastive training.

Can we leverage data efficiency of natural language?

Can we train a vision model to work "zero-shot"?

NLP systems have benefited tremendously from scale.


T5 (Raffel et al., 2019), GPT-3 (Brown et al., 2020) 

etc. showed zero-shot transfer scale benefits.


Web scale supervision seems to surpass manual 

curation for NLP datasets.


Scaling up manual annotation of images is expensive. 


Thanks to alt-text, there are large quantities of images 

with text descriptions online.

Can we scale up vision training with web text?
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Building blocks
Creating a large enough dataset

Reference/Image credits: T. Lin et al., "Microsoft coco: Common objects in context", ECCV (2014)

R. Krishna et al., "Visual genome: Connecting language and vision using crowdsourced dense image annotations", IJCV (2017)

B. Thomee et al., "YFCC100M: The new data in multimedia research", Communications of the ACM (2016)

D. Mahajan et al., "Exploring the limits of weakly supervised pretraining", ECCV (2018)

G. A. Miller, "WordNet: a lexical database for English", Communications of the ACM (1995)

Prior work learning with natural language has used datasets of limited scale


•MS COCO and Visual Genome (both  images)


•YFC100M (  images with noisy metadata, so  after filtering)


By contrast, strong vision classifiers (Mahajan et al., 2018) have benefited from 

training on  images.


To assess whether natural language works at scale, a new dataset is collected.


The dataset is built by searching for (image, text) pairs with 500K queries.


The queries are formed from:


•words occurring at least 100 times in English Wikipedia


•bi-grams (with high mutual information) augment the initial queries 


•names of wikipedia articles above a search volume threshold


•WordNet sysnets


Approximate class balancing: include up to 20K (image, text pairs) per query.


The resulting WebImageText (WIT) dataset contains 400M (image, text) pairs.

𝒪(100K )

𝒪(100M) 𝒪(15M)

𝒪(3B)

Choosing an efficient pre-training method
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The strongest computer vision systems use significant computation to train:


•Mahajan et al. (2018) use 19 years of GPU time to train on instagram


•Xie et al. (2020) use 33 years of TPUv3 time to train Noisy Student


For large-scale pre-training, efficiency is a key consideration.

Baseline: captioning system 

inspired by VirTex


Improvement: bag of 

words prediction


CLIP: contrastive image-text 

matching


Given  image-text pairs, 

CLIP predicts which of  

possible pairs is valid.

N

N × N

Q. Xie, et al., "Self-training with noisy student improves imagenet classification", CVPR (2020)

(VirTex) K. Desai, J. Johnson, "Virtex: Learning visual representations from textual annotations", CVPR (2021) 



Contrastive Pre-training
Multi-modal embedding

Reference/Image credits: 

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021) 

K. He et al., "Deep residual learning for image recognition", CVPR (2016)

T. He et al., "Bag of tricks for image classification with convolutional neural networks", CVPR (2019)

CLIP trains an image and text encoders to maximise cosine similarities of the 

 valid pairs within each batch (and minimises those of invalid pairings).N

Training details

Pseudocode

Since WIT is large (low risk of overfitting) both encoders are trained from scratch.


Linear projections (rather than non-linear) used between the representations and 

the shared embedding space, since no difference was observed during training.


Simple image data augmentation: use a random square crop from resized images.


The (log-parameterised) softmax temperature, , is learned during training.τ

Models
Image encoders: 


1. ResNet-50 (He et al., 2015, He et al. 2019, Zhang 2019) 


Replace Global Average Pooling with attention pooling (in style of Transformer 

layer) where query is conditioned on the global average pooled feature. 


2. Vision Transformer (Dosovitskiy et al., 2020) with additional layer norm


Text encoder: 


Text transformer (Vaswani et al., 2017) trained on BPE text with 49K vocab size


Sentences were capped to 76 tokens and bracketed with [SOS] and [EOS] tokens.


[EOS] embedding at the last transformer layer is used as the text representation.

R. Zhang, "Making convolutional networks shift-invariant again", ICML (2019)

A. Vaswani et al., "Attention is all you need", NeurIPS (2017)

A. Dosovitskiy, et al. "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR (2021) 

(Scaling) M. Tan and Q. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks", ICML (2019)

Scaling: equal compute budget to width, depth, resolution

Scaling: only scale up width proportional to ResNet



Best performing CLIP model

Training - nuts and bolts
CLIP model details

References

H. Touvron et al., "Fixing the train-test resolution discrepancy: FixEfficientNet", arxiv (2020)

D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization", ICLR (2015)

I. Loshchilov and F. Hutter, "Decoupled weight decay regularization", arXiv (2017)
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All text transformers have 12 layers.

Trained with FixRes 
(Touvron et al., 2019) 

CLIP optimisation details
Models were trained for 32 epochs with AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017)


Learnable temperature initialised to the equivalent of 0.07 (Wu et al., 2018) and clipped to prevent logit scaling more than x100 for stability.


A large minibatch size of 32,768 was used in combination with mixed-precision training (Micikevicius et al. 2018) for efficiency. 


Gradient checkpointing (Griewank and Walther, 2000) was also used to reduce memory consumption.


The largest ResNet, RN50x64, took 18 days to train on 592 V100 GPUs


The largest Vision Transformer, ViT-L/14, took 12 days on 256 V100 GPUs.

Z. Wu et al., "Unsupervised feature learning via non-parametric instance discrimination", CVPR (2018) 

P. Micikevicius et al., "Mixed precision training", ICLR (2018) 

A. Griewank and A. Walther, "Algorithm 799: revolve: an implementation of checkpointing for the 
reverse or adjoint mode of computational differentiation", TOMS (2000)
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Experiments

References/Image credits

C. H. Lampert et al., "Learning to detect unseen object classes by between-class attribute transfer", CVPR (2009)

P. J. Liu et al., "Generating wikipedia by summarizing long sequences", ICLR (2018)

(SVHN) Y. Netzer et al., "Reading Digits in Natural Images with Unsupervised Feature Learning", (2011)

(CIFAR-10) A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images", (2009)

(TinyImages) A. Torralba et al., "80 million tiny images: A large data set for nonparametric object and scene recognition", TPAMI (2008)

1. Zero-shot transfer

2. Representation learning

3. Robustness

Zero-shot learning in computer vision typically refers to the task of generalising to unseen object 

categories (Lampert et al., 2009).


In this work, the term is used to mean generalisation to unseen datasets (a proxy for unseen tasks).


Rationale: zero-shot transfer can be thought of as assessing the task learning ability of a model: 


A dataset evaluates performance on a task on a specific distribution


The zero-shot transfer focus is inspired by works illustrating task learning in NLP.


Notable example: the Wikipedia article generation model of Liu et al. (2018), which learned to reliably 

transliterate names between languages as an "unexpected side-effect".


Note: the authors note that this metaphor of datasets-as-tasks is not always clear cut.


Many vision datasets were introduced as benchmarks for generic image classifiers, not specific tasks:


SVHN (task: street number transcription, distribution: Google Street View photos)


CIFAR-10 (task: ?, distribution: TinyImages)


Zero-shot transfer has had limited attention in computer vision - an exception is Visual N-Grams (Li et 

al., 2017), compared to in the experiments. 

Evaluate visual representation quality via linear probes:


Linear (rather than non-linear) probes are used to avoid 

the introduction of additional hyperparameters and cost.

A. Li, A. Jabri, A. Joulin, and L. Van Der Maaten, "Learning visual n-grams from web data", ICCV (2017) 

R. Taori et al., "Measuring robustness to natural distribution shifts in image classification", NeurIPS (2020)

Assess robustness to "natural distribution shifts" studied by 

Taori et al. (2020).



Using CLIP for Zero-shot Transfer

References/Image credits

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

D. Ha, A. Dai, Q. V. Le, "Hypernetworks", ICLR (2017)

Zero-shot transfer with CLIP

Notes: 


We can interpret the text encoder as a hypernetwork (Ha et al., 2016) that generates the weights of a linear classifier.


The text features for each class are cached, so the cost is amortised over all predictions for a dataset.

Classification

1. Compute cosine similarities


2. Scale similarities by 

temperature 


3. Normalise into 

probabilities via softmax


(effectively logistic regression) 

τ

Contrastive pre-training Create dataset classifier from label text

Zero-shot prediction



Initial zero-shot transfer experiments/prompting

References/Image credits

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021) 

A. Li et al., "Learning visual n-grams from web data", ICCV (2017)

(aYahoo dataset) A. Farhadi et al., "Describing objects by their attributes", CVPR (2009)

Comparison to Visual N-grams

Prompt Engineering

Compare zero-shot transfer against Visual N-grams (Li et al., 2017) on three datasets.


Not controlled experiments (in compute, model capacity or data), but useful context for the magnitude of gains.

Prompt Ensembling

(ImageNet dataset) J. Deng et al., "Imagenet: A large-scale hierarchical image database", CVPR (2009)

(SUN dataset) J. Xiao et al., "Sun database: Large-scale scene recognition from abbey to zoo", CVPR (2010)

(Oxford-IIIT Pets) O. Parkhi et al., "Cats and dogs", CVPR (2012)

In zero-shot transfer, using text class labels can present challenges:


Some datasets only provide integer class id labels (these cannot be used).


One issue is polysemy - the word sense is ambiguous without context.


E.g. in ImageNet there are two "crane" classes (bird and construction)!


Prompt Templates: since images are rarely paired with single words 

during training, templates like "A photo of a {label}." are useful.


On ImageNet, just using this prompt over raw labels brings a gain of 1.3%.


Customised templates are also useful for fine-grained classification:


•(Oxford-IIIT Pets) "A photo of a {label}, a type of pet."


•(Satellite imagery) "A satellite photo of a {label}"

Ensembling over zero-shot classifiers 

can further boost performance.


•"A photo of a big {label}."


•"A photo of a small {label}."


Note: Ensembling is performed over 

the embeddings, rather than predicted 

probabilities to enable caching so that 

the cost is amortised over predictions.


On ImageNet, ensembling over 80 

different prompts yields a 3.5% gain.

Prompt influence over 36 datasets

Model GFLOPS
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Zero-shot analysis

References/Image credits

S. Kornblith, J. Shlens and Q. V. Le, "Do better imagenet models transfer better?", CVPR (2019)

(VTAB) X. Zhai et al., "The visual task adaptation benchmark", openreview.net, (2019) 

(ResNet-50) K. He et al., "Deep residual learning for image recognition", CVPR (2016)

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

Datasets Zero-shot evaluation

A suite of 27 datasets are used for analysis:

Food-101 CIFAR-10 CIFAR-100 Birdsnap SUN397

Stanford Cars FGVC Aircraft Pascal VOC 2007 Classification

Describable Textures Caltech-101Oxford-IIIT Pets

Oxford Flowers 102
12 datasets of Kornblith et al. (2019)

MNIST FER 2013 STL-10 EuroSAT RESISC45 GTSRB

KITTI

Country211

PatchCamelyon UCF101 Kinetics700 CLEVR Counts

ImageNetRendered SST2 Hateful MemesCountry211 Rendered SST2

Kinetics700UCF101

Video datasets: use frames as input images


Country211: geolocalisation (photos across 211 countries)


Rendered SST2: OCR evaluation
Additional 15 datasets

Baseline: (fully-supervised) linear probe on (ImageNet) ResNet-50 features.  

Fine-grained

Different per-task supervision in 

WIT and ImageNet?

General objects

Similar performance, slightly in 

favour of CLIP.

SOTA

Action recognition

Language supervision may 

help with verbs.

Complex/abstract

CLIP struggles with complexity


Few-shot eval may be better( change in score)

Zero-shot CLIP vs linear probe on ResNet 50

Δ %



Zero-shot vs few-shot

References/Image credits

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021) 

R. Zhang et al., "Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling", arXiv (2021)

Comparison to few-shot linear probes Individual dataset analysis

Comparison: zero-shot CLIP vs few-shot linear probes on various features


Data: the 20 datasets with at least 16 examples per class. 

# labelled training examples per class
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Combining zero-shot & one-shot was non-trivial (but see Zhang et al. (2021))

Aim: Estimate data efficiency of zero-shot CLIP across datasets.


For efficiency, estimate few-shot score for each #shots via interpolation.

# labelled training examples per class required to match zero-shot

Underperform 1-shot

Require many shots



Zero-shot optimality and model scaling

References/Image credits

S.Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

J. Kaplan et al., "Scaling laws for neural language models", arXiv (2020)

Zero-shot vs supervised linear classifier Model scaling

Since zero-shot classifier is a linear classifier, we can use fully-supervised 

linear probes as an approximate upper bound for zero-shot transfer. 

Zero-shot performance is correlated with fully supervised performance.

Empirical studies have shown deep learning performance can scale 

smoothly with model capacity, dataset size etc. (Kaplan et al. 2020)


Study: compare CLIP across 36 datasets over 44x compute scaling 
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Similar to prior studies, a log-linear trend is observed across compute.



Representation Learning

References/Image credits

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)  

S. Kornblith, J. Shlens and Q. V. Le, "Do better imagenet models transfer better?", CVPR (2019)

A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR (2021)

Linear probes Comparison to best model - breakdown

Probe avg. over 12 datasets (Kornblith et al. 2019)
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Forward-pass GFLOPs/image

CLIP scale well with compute

CLIP ViTs 3x more compute efficient than CLIP 
ResNets - similar finding to Dosovitskiy et al. (2021)

Dotted lines indicate models fine-tuned/evaluated at higher resolution than during pre-training.

Forward-pass GFLOPs/image
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Probe avg. over 27 datasets

Best (FixRes)

H. Touvron et al., "Fixing the train-test resolution discrepancy: FixEfficientNet", arxiv (2020)

Q. Xie et al., "Self-training with noisy student improves imagenet classification", CVPR (2020)

( change in score)

Logistic Regression on CLIP vs EfficientNet L2 NS

Δ %

Compare CLIP to best model - Noisy Student EfficientNet-L2 (Xie et al., 2020)

OCR

Geolocalisation

Action recognition

Automotive

ImageNet

Low-resolution



Robustness to natural distribution shifts

References/Image credits

K. He et al., "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification", CVPR (2015) 

(Karpathy human estimate) https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/ 

S. Dodge et al., "A study and comparison of human and deep learning recognition performance under visual distortions", ICCCN (2017) 

B. Recht et al., "Do imagenet classifiers generalize to imagenet?", ICML (2019)

Motivation Robustness to seven natural distribution shifts

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)  

Since 2015, deep learning models have exceeded human performance (as courageously 

estimated by A. Karpathy) estimate (He et al., 2015)


But later studies have found these systems still make simple mistakes (Dodge et al., 2017) 

and fall below human performance on other benchmarks (Recht et al. 2019)


Common explanation: deep learning finds both useful and spurious correlations


However, most studies have examined models trained on ImageNet.


To what extent are failures attributable to ImageNet training, deep learning or both?


CLIP models (trained with natural language supervision on very large training dataset - 

not ImageNet, good zero-shot performance) enable a fresh analysis of this question.

Datasets

Evaluate robustness to seven "natural distribution shifts" investigated by Taori et al. (2020).

ImageNetV2 ImageNet Sketch Youtube-BBImageNet-Vid

ObjectNet ImageNet Adversarial ImageNet Renditions Average on class subsampled ImageNet (top-1, %)
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CLIP ResNet/
ViT models

https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/


Robustness to natural distribution shifts (qualitative)

References/Image credits

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

(ImageNet dataset) J. Deng et al., "Imagenet: A large-scale hierarchical image database", CVPR (2009)

(ImageNetV2) B. Recht et al., "Do imagenet classifiers generalize to imagenet?", ICML (2019)

(ImageNet-R) D. Hendrycks et al., "The many faces of robustness: A critical analysis of out-of-distribution generalization", ICCV (2021)

Banana Visualisation 

(ObjectNet) A. Barbu et al., "Objectnet: A large-scale bias-controlled dataset for pushing the limits of 
object recognition models", NeurIPS (2019)

(ImageNet Sketch) R. Geirhos et al., "ImageNet-trained CNNs are biased towards texture; increasing 
shape bias improves accuracy and robustness", arXiv (2018)

(ImageNet-A) D. Hendrycks et al., "Natural adversarial examples", CVPR (2021)
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How does ImageNet adaptation affect robustness?

References/Image credits

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

D. Yogatama et al., "Learning and Evaluating General Linguistic Intelligence", (2019)

ImageNet adaptation

The strong zero-shot robustness of CLIP need not imply that ImageNet training causes the robustness gap.


Other elements of CLIP (pretraining dataset size or natural language supervision) could explain its robustness.


Experiment: first fit CLIP features to ImageNet via logistic regression, then re-evaluate robustness.   

Few-shot robustness

Average on class subsampled ImageNet (top-1, %)
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CLIP model

Change from zero-shot ImageNet classifier acc. (%)

Change from zero-shot ImageNet classifier acc. (%)
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Takeaway: large-scale task and dataset agnostic pre-training with zero/few-shot 

evaluation on diverse benchmarks (Yogatama et al., 2019) promotes robustness.



Comparison to Human Performance

References/Image credits

O. Parkhi et al., "Cats and dogs", CVPR (2012) 

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

Human study

To assess how CLIP compares to humans, 5 humans predicted labels the Oxford 

IIT Pets dataset (Parkhi et al., 2012), a 37-way dog/cat breed classification task.


Humans were evaluated in zero-shot, one-shot and two-shot settings.

Major gain from zero-shot to one-shot. No gain from one-shot to two-shot.


The gain from zero-shot to one-shot is almost entirely on images that humans 

were uncertain about (i.e. they have a sense of what they don't know).


There are likely opportunities for improvements for machine sample efficiency.


Integrating prior knowledge (like humans) seems a promising direction.

Error analysis

Problems that are hard for CLIP are also hard for humans.


Likely due to label noise and difficulty of out-of-distribution images. 
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Downstream applications
Text and Image Retrieval

References:

(Flickr30K) P. Young et al., "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions", ACL (2014)

(MSCOCO) X. Chen et al. "Microsoft coco captions: Data collection and evaluation server", arXiv (2015)

(MNIST) Y. LeCun et al., "Gradient-based learning applied to document recognition", Proceedings of the IEEE (1998)

(SVHN) Y. Netzer et al., "Reading Digits in Natural Images with Unsupervised Feature Learning", (2011)

(IIIT5K) A. Mishra et al., "Scene text recognition using higher order language priors", BMVC (2012)

Action Recognition

Optical Character Recognition (OCR)

Geolocalisation

Retrieval Tasks: 


Image retrieval - rank images according to how well they fit a query


Text retrieval - rank captions according to how well they describe an image

Flickr30K MSCOCO

Results: Strong zero-shot retrieval results on both datasets vs prior work.


A little behind SOTA among methods fine-tuned on MSCOCO.

Datasets:

Assess performance on tasks requiring direct/indirect use of OCR:

MNIST SVHN IIIT5K Hateful Memes SST -2

Low-level character/word recognition Semantic tasks

Results: Strongly dependent on domain (rendered vs natural images)


Strongly dependent on type of text (numbers vs words)

Good Hateful Memes SST -2 OK IIIT5K Poor MNIST SVHN

(Hateful Memes) D. Kiela et al., "The hateful memes challenge: Detecting hate speech in multimodal memes", NeurIPS (2020)

(SST-2) R. Socher et al., "Recursive deep models for semantic compositionality over a sentiment treebank", EMNLP (2013)

(UCF-101) K. Soomro et al., "UCF101: A dataset of 101 human actions classes from videos in the wild", arXiv (2012)

(Kinetics-700) J. Carreira et al., "A short note on the kinetics-700 human action dataset", arXiv (2019)

(RareAct) A. Miech et al., "RareAct: A video dataset of unusual interactions", arXiv (2020)

(IM2GPS) J. Hays and A. Efros, "IM2GPS: estimating geographic information from a single image", CVPR (2008)

Assess CLIP (both linear probes and zero-shot) for action recognition.


For linear probe, the middle frame of each video is used (to reduce cost)


For zero-shot all frames are used (scores are averaged)

UCF-101 Kinetics-700Datasets: RareAct

Results: Encouraging linear probe/zero-shot on UCF-101 & Kinetics-700


SOTA on zero-shot recognition on RareAct.

It was observed during development that CLIP could recognise many locations.


This ability was quantified on two tasks.

Country211(new) IM2GPSDatasets:

To perform location regression for IMG2GPS, GPS coordinates are estimated via 

nearest neighbours in a set of 1M reference images with CLIP embeddings.


Results: solid results on IM2GPS (though not SOTA)
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Data Overlap Analysis: Approach
Overview

A key issue with large internet dataset pre-training is unintentional overlap with 

downstream evaluation datasets (invalidating results).


One solution: remove all duplicates before training a model


Pros: guarantees true downstream hold-out performance


Cons: requires knowing all possible test data ahead of time (limits analysis)


Alternative approach (taken in this paper) is to document:


•how much overlap occurs?


•how much performance changes due to these overlaps?

Dataset overlap analysis pipeline

For each evaluation dataset:


1. Estimate contamination:


•Run near-duplicate detector


•Use manual inspection to set per-dataset threshold (for high precision & recall)


•Split dataset into 


•Report data contamination as the ratio |Overlap| / |All|


2. Estimate performance change due to contamination:


•Compute zero-shot accuracy of CLIP RN50x64 on Overlap, Clean, All.


•Report acc(All) - acc(Clean) as metric for performance change


3. Assess significance 


•Since overlap is typically small, run binomial significance test (using accuracy 

on Clean as null hypothesis, compute one-tailed p-value for Overlap subset)


•Also compute 99.5% Clopper-Pearson confidence intervals on Overlap.

Clean (below thr) Overlap (above thr) All

Near-duplicate Detector

CLIP embeddings do not work well for duplicate detection (too semantic)


Train a ResNet-50 with InfoNCE loss to discriminate augmented versions of 

images from other images.


Training set: 30 million image subset of 400 million dataset.


At the end of training, it achieves nearly 100% accuracy on proxy training task.



Data Overlap Analysis: Results
Visualisation of overlap and contamination influence

References/Image credits

(MNIST) Y. LeCun et al., "Gradient-based learning applied to document recognition", Proceedings of the IEEE (1998)

(CLEVR) J. Johnson et al., "Clevr: A diagnostic dataset for compositional language and elementary visual reasoning", ICCV (2017)

(GTSRB) J. Stallkamp et al., "The German traffic sign recognition benchmark: a multi-class classification competition", IJCNN (2011)

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

Overlap statistics across the 35 evaluation datasets considered in this work 


Among these datasets, 9 have no detected overlap with the pre-training dataset:


•Some are specialised/synthetic (e.g. MNIST, CLEVR, GTSRB), making them unlikely to posted online as normal images.


•Others contain data created after the pre-training dataset was curated (ObjectNet and Hateful Memes)

Median overlap: 2.2% with pre-training Mean overlap: 3.2% with pre-training

(ObjectNet) A. Barbu et al., "Objectnet: A large-scale bias-controlled dataset for pushing the limits of object 
recognition models", NeurIPS (2019)

(Hateful Memes) D. Kiela et al., "The hateful memes challenge: Detecting hate speech in multimodal 
memes", NeurIPS (2020)
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Statistically significant

Limitations: (1) imperfect duplicate detection (hard to validate); (2) distribution shift (e.g. all "overlaps" in Kinetics are black transition frames) 

Summary: data contamination does not appear to have a major effect on results
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Limitations
Zero-shot performance

Zero-shot CLIP is competitive against a supervised linear probe on ResNet-50 

features, but well behind SOTA on most datasets.


Estimate: 1000x more compute is required for zero-shot CLIP to reach SOTA


Research is required to improve the computational/data efficiency of CLIP.


CLIP struggles on abstract tasks like counting objects in an image, certain fine-

grained classification tasks, and tasks likely outside the pre-training data.


On truly out-of-distribution data, such as MNIST, CLIP achieves only 88%, 

underperforming logistic regression on raw pixels.


Given its good performance on other OCR evaluations, this suggest CLIP does 

not address the brittle generalisation of deep learning models.


Instead, it hopes all test data will be effectively in-distribution from pre-training.


As MNIST demonstrates, this assumption is easily violated in practice.

Data efficiency

Flexibility

CLIP is limited to choosing among concepts in a given zero-shot classifier.


Less flexible than image captioning.


Future work could combine the efficiency of CLIP with flexible captioning. 

References

(ResNet-50) K. He et al., "Deep residual learning for image recognition", CVPR (2016)

CLIP inherits the poor data efficiency of deep learning


It aims to compensate by using a scalable pre-training data source.


Fun fact: if each image seen by CLIP was shown at 1 fps, it would take 405 

years to iterate through the 32 epochs of training (12.8 billion images).

Methodology

Repeated querying of validation sets to guide CLIP development.


While 12 datasets used follow Kornblith et al., (2019), the broader suite of 27 

datasets is co-adapted with development and capabilities of CLIP.


A benchmark of tasks for broad zero-shot transfer could help address this.

Uncurated data

By training on unfiltered internet image/text CLIP learns many social biases.

Room for few-shot improvement

Few-shot performance often falls below zero-shot: more research is required.

S. Kornblith, J. Shlens, & Q. V. Le, Q "Do better imagenet models transfer better?", CVPR (2019) 
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Broader Impacts
Overview

Thanks to zero-shot performance, CLIP has a broad range of applications.


Since it allows creating classes for categorisation ("roll your own classifier") it is 

challenging to characterise - capabilities become clear only after testing for them.


Applications: CLIP shows significant promise for tasks like retrieval, and possibly 

also for novel applications enabled by its limited need for specialised task data.


Analysis: FairFace bias benchmark, bias probes, surveillance performance.


Limitation: bias tests are limited in scope. Analysis required in deployment context.


Note on class design: Algorithmic design, training data and class definitions/

taxonomies (or "class design") have implications for social biases. 


Class design is particularly important for CLIP (anyone can define their own class).

FairFace - classification analysis

References/Image credits:

K. Karkkainen and J. Joo, "Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation", WACV (2021) 

G. Bowker and S. L Star, "Sorting things out - Classification and its consequences", (1999)

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

Fairface is a dataset of 106K images that are approximately balanced 

across 7 race categories, annotated with (est.) age, race and gender.


Linear probe CLIP tends to outperform existing baselines race, gender 

and age classification - zero-shot achieves more mixed results. 

Gender classification

Note: probes offer only one approximation of algorithmic fairness. 



Broader Impacts - analysis
FairFace - denigration harm terms

References/Image credits:

K. Karkkainen and J. Joo, "Fairface: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation", WACV (2021) 

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)

Zero-shot CLIP model was required to classify 10,000 images from FairFace dataset.


FairFace classes were augmented with {"animal", "gorilla", "chimpanzee" 

"orangutan"} (non-human), {"thief", "criminal", "suspicious person"} (crime-related).


Question: are these terms disproportionately assigned to demographic subgroups?

% of images classified into crime-related and non-human categories

% of images classified into crime-related or non-human categories

Takeaway: class design can play an important role.

Gender study on congress

Construct label sets: (1) 300 occupations; (2) labels predicted by cloud vision services


Experiment: gender prediction with CLIP on members of congress (100% accuracy)


Influence of thresholds: At 4% probability threshold, highest probability 

occupation labels across genders were "lawmaker", "legislator", "congressman".


At 0.5% threshold: "nanny", "housekeeper" (women), "prisoner", "mobster" (men) 

Label distribution on cloud vision label set at 0.5% threshold

Observation: analysis depends on thresholds



Broader Impacts - surveillance
Surveillance

References/Image credits:

S. Oh et al., "A large-scale benchmark dataset for event recognition in surveillance video", CVPR, (2011)

J. Varadarajan and J-M. Odobez, "Topic models for scene analysis and abnormality detection", ICCVW (2009)

Experiment: Measure zero-shot classification on footage from CCTV cameras: 

VIRAT dataset (Oh et al., 2011) and video from Varadarajan et al. (2009).


Model tasked with predicting coarse-grained and fine-grained labels for images.


Coarse-grained labels: main subject of the image, such as "empty parking lot"


Fine-grained labels: smaller features, e.g. "person standing in the corner"


Coarse-grained accuracy across six labels (including hard negatives) was 51.1%


Fine-grained accuracy was near random.


Takeaway: CLIP is not outstanding on CCTV surveillance footage. 

Celebrity Recognition

CelebA zero-shot Top-1 Identity Recognition 

While far from SOTA, the results are notable since the names 

inferred solely from pre-training data.

Zero-shot celebrity recognition: CelebA 8K images

Summary

Given existing specialised systems for surveillance, CLIP appeal for such tasks may be relatively low. 


By removing the need for training data, it could enable bespoke surveillance systems for which there are no existing 

models/training data. 


It could also lower the skill required to build these applications. 

(CelebA) Z. Liu et al., "Deep learning face attributes in the wild", ICCV (2015)

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)
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Related Work
Mori et al., (1999)

References/Image credits:

Y. Mori et al., "Image-to-word transformation based on dividing and vector quantizing images with words", MISRM (1999)

A. Miech et al., "Howto100m: Learning a text-video embedding by watching hundred million narrated video clips", ICCV (2019)

Fergus et al., (2005)

Miech et al., (2019)

Image-to-word transformation

Learning Inference

R. Fergus et al., "Learning object categories from google's image search", ICCV (2005)

J. Lu et al., "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks", NeurIPS (2019)

Webly-supervised learning

Lu et al., (2019)

Framework

Vision/language pre-training

Joint embedding136 million video clips

Shared vision and language

Vision and language with interaction
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Summary

Takeaway

This work has investigated the feasibility of task-agnostic web-scale pre-

training (shown to be effective in NLP) to computer vision.


It has shown computer vision also benefits from such an approach.


During pre-training, CLIP models learn a wide range of tasks.


This pre-training enables non-trivial zero-shot transfer to many datasets.

Reference:

A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)


