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Motivation

Vision transformers and self-supervision

Transformers have seen tremendous success in NLP

Vision Transformer (ViT) demonstrated competitive performance with
CNNs, but did not show dramatic benefits

A key factor in NLP successes was the use of self-supervision:

BERT (Devlin et al., 2019) - clozes/next sentence prediction

GPT (Radford et al., 2019) - language modelling

However, ViT is trained in a fully-supervised manner

Would Vision Transformers also benefit from self-supervision?

Reference:
(Transformers) A. Vaswani et al., "Attention is all you need", NeurlPS (2017)

(ViT) A. Dosovitskiy, et al. "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR (2021)

Emergent properties

Transformers encode a different set of inductive biases to CNNs
Without convolutions, they do not enforce the principle of locality
It is possible that Transformers behave differently under self-supervision

They may encode scene layout or object boundaries differently

Do different properties emerge from Transformers than CNNs?2

Which factors matter?

Many ideas in the self-supervised literature have improved performance

® momentum encoders (He et al., 2020)

® multi-crop augmentation (Caron et al., 2020)

How do these components affect feature properties?

K. He et al., "Momentum contrast for unsupervised visual representation learning", CVPR (2020)
M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurIPS (2020)

(BERT) J. Devlin et al., "Bert: Pre-training of deep bidirectional transformers for language understanding”, NAACL-HLT (2019)

(GPT) A. Radford et al., "Language models are unsupervised multitask learners" (2019)
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Related Work

Dosovitskiy et al., (2014) Grill et al., (2020)
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References/Image credits:
A. Dosovitskiy et al., "Discriminative unsupervised feature learning with convolutional neural networks", NeurlPS (2014) J-B. Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurlPS (2020)
Q. Xie et al., "Selftraining with noisy student improves imagenet classification", CVPR (2020) R. Anil et al., "Large scale distributed neural network training through online distillation", arxiv (2018)
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Framework: Self-Supervised Learning with Knowledge Distillation

Overview

student learns from teacher

loss:
‘_ - p2log pr =>( ps

—1— sg

softmax

softmax

centering

student gyg;

teacher gyg;

Reference/Image credits:

Distribution matching

A student distribution is produced via a softmax:

exp(ggs(x)(i)/ 7,)
exp( Y, 85,0)©/z)

P (x)" =

where 7. > (0 is a temperature hyperparameter

Similarly a teacher distribution is produced via:
exp( get(x)(i) /T,

exp( Xy, 800 N/E)

Px)" =

where 7, > (0 is another temperature hyperparameter

Distributions are matched via cross-entropy

min H(P(x), P(x)) where H(a,b) = —alogh

2% Minimised w.r.t student parameters

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)

Pseudocode

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
x1l, x2 augment (x) , augment (x) # random views

sl, s2 = gs(x1l), gs(x2) # student output n-by-K
tl, t2 = gt(xl), gt(x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt.params = lxgt.params + (1l-1)*gs.params
C mxC + (l-m)*cat([tl, t2]) .mean (dim=0)

H(t, s):

t.detach() # stop gradient

softmax(s / tps, dim=1)

softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1) .mean ()



Framework: Self-Supervised Learning with Knowledge Distillation

Global and local views Teacher network Network architecture

In practice, V > 2 of each image are used We do not have access to a supervised teacher The neural network g consists of:

|nspired by mulﬁcrop sfrqfegy of SwAV Instead is built from pCISi' iterations OF the student °q backbonef(ViT or ResNet)

The set of views V contains: It is found that @ momentum encoder works well with cq 5

¢ 2 global views x%, x§

e several local views of smaller resolution
Only global views are passed to the teacher
All crops (global and local) are passed to the student

This encourages

exponential moving average (EMA)

Update rule for teacher: 6, < 16, + (1 — 1)0,

Note: the of the momentum encoder in DINO is

different to its role in MoCo (a queue for consistency)

These are composed g = hof

The features from f are used for downstream tasks

where 1 follows a cosine schedule from 0.996 to 1 The projection head is a 3-layer MLP (similar to SwAV)

* 2048 dimensional hidden layer with [, normalisation

* a fully connected layer with with K dims

rréin Z 2 H(P/(x), P(x")) It may be closer to that of Mean Teacher (model No used (unlike BYOL, identical teacher/student)

S xe(xf a8} XV x'Ex parameter ensembling)

¥ both local and global

Since ViT architectures do not use batch norm by default,

Similar to Ruppert-Polyak model averaging to improve DINO with ViT backbone is free from batch norm

Global views are crops at 2242 resolution (> 50% area)

[ ] 2 [ ]
< [ ] (] [ ]
Local views are crops at 96~ resolution ( < 50 % area) than the student during training

References:

(SWAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)
(Momentum Encoder, MOCO) K. He et al., "Momentum contrast for unsupervised visual representation learning”, CVPR (2020)
(Cosine schedule) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurlPS (2020)
(MeanTeacher) A. Tarvainen et al., "Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results", NeurIPS (2017)

performance, resulting in a teacher that performs better

D. Ruppert, "Efficient estimations from a slowly convergent Robbins-Monro process" (1988)

B. T. Polyak et al., "Acceleration of stochastic approximation by averaging." SICON (1992)

(ViT) A. Dosovitskiy, et al. "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR (2021)
(ResNet) K. He et al., "Deep residual learning for image recognition", CYPR (2016)

(WeightNorm) T. Salimans et al., "Weight normalization: A simple reparameterization to accelerate training of deep
neural networks", NeurIPS (2016)



DINO: Avoiding collapse

Normalisation constraints to prevent collapse

A key problem for self-supervised methods is the prevention of representation collapse to a single vector
Different mechanisms have been used to prevent collapse:

e Contrastive loss (e.g. Instance Discrimination)

o Clustering constraints (e.g. DeepCluster, SWAV)

. & (e.g. BYOL)

* Batch Norm alternatives such as Group Norm and Weigh Norm (BYOL-variant)

DINO is found to work well with a combination of centring and sharpening of the teacher outputs

This approach trades stability in exchange for reduced dependence on the batch

Centring (unlike batch norm) only depends on first-order batch statistics

This operation can be interpreted as adding a bias term ¢ to the teacher: g(x) « g,(x) + ¢

The centre c is updated with an EMA, so it works well across different batch sizes:

1 B
c —mc—+ (1 —m)— X;
( )B,Z‘g@( )

where is a rate parameter and B is the batch size

Sharpening is achieved by using a low softmax temperature 7, for the teacher

References:

(InstanceDisc) Z. Wu et al., "Unsupervised feature learning via non-parametric instance discrimination", CVPR (2018) (Batch Norm) S. loffe et al., "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML (2015)
(DeepCluster) M. Caron et al., "Deep clustering for unsupervised learning of visual features", (ECCV) 2018 (Group Norm) Y. Wu et al., "Group normalization", ECCV (2018)

(SWAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)  (Weight Norm) T. Salimans et al., "Weight normalization: A simple reparameterization to accelerate training of deep neural

(BYOL) J-B. Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning”, NeurlPS (2020) networks", NeurlPS (2016)

(BYOL-variant) P. Richemond et al., "BYOL works even without batch statistics", arxiv (2020)



Nuts and bolts

Vision Transformer (ViT) for DINO

O

DINO Vision Transformer implementation follows DeiT

- number of transformer blocks
- channel dimension for representation
- number of heads in multi-head attention
- length of token sequence for 2242 pixel inputs

- total number of parameters (excluding projection head)

- timings on an NVIDIA V100 GPU with 128 samples in the minibatch

As with prior work [CLS] token aggregates information - this is projected via the h

DINO optimisation details

Pretraining is performed on ImageNet without labels

Models are optimised with AdamW with a batch size of 1024 on 16 GPUs (ViT-S/16)
Use linear scaling learning rate warmup, then decays with a cosine schedule

Weight decay follows a cosine schedule from 0.04 to 0.4

The of the student 7 is set to 0.1, while the teacher temperature z, is warmed up linearly from 0.04 to 0.07 over the first 30 epochs

Use BYOL (colour jitter, Gaussian blur, solarisation)

Bicubic interpolation is used to adapt the position embeddings across scales

References:
H. Touvron et al., "Training data-efficient image transformers & distillation through attention”, ICML (2021)

(ImageNet) O. Russakovsky et al., "Imagenet large scale visual recognition challenge", 1JCV (2015)
(AdamW) I. Loshchilov et al., "Decoupled weight decay regularization", arxiv (2017)
(LR warmup) P. Goyal et al., "Accurate, large minibatch sgd: Training imagenet in 1 hour", arxiv (2017)

(Cosine schedule) I. Loshchilov et al., "Sgdr: Stochastic gradient descent with warm restarts", arxiv (2016)
(BYOL) J-B. Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning”, NeurlPS (2020)
(Github) hitps://github.com/facebookresearch/dino
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Evaluation protocols

Evaluating DINO features

Typically, self-supervised features are evaluated via (on frozen features) and

® Data augmentation (random resize crops and horizontal flips) to train the probe

* Evaluate on a central crop

* |nitialise network with pretrained weights and adapt them during training

Note: both protocols are sensitive to hyperparameter choices

So, also evaluate under a k-NN protocol (Wu et al., 2018):

* Freeze the pretrained model and compute features for training sets on

* Nearest neighbour classifier matches k nearest neighbours on training set and assigns label by votes
Sweep over different numbers of nearest neighbours - a value of 20 NN is found to work well

k-NN protocol requires no other hyperparameters or data augmentation

It also requires only one pass over the downstream dataset (simplifying the evaluation procedure)

References:
(k-NN self-sup protocol) Z. Wu et al., "Unsupervised feature learning via non-parametric instance discrimination”, CVPR (2018)



Evaluation protocols - details

k-NN weighted evaluation protocol

Features are computed for training data of downstream task ( model)
Classify a test image x by comparing features against training features T

Representation of an image is the
® 384 dimensional for ViT-S
e 768 dimensional for ViT-B

The top k nearest neighbours, ./, make a class prediction by voting

Class c is assigned a weight of Z al-lc_:C
€N,

The contribution weight o, for each neighbour is defined via:
a; = exp(T.x/7) with t = 0.07 following Wu et al. (2018)

A choice of k = 20 works consistently well

References:

Linear classification protocol

Remove projection head and train a supervised linear classifier on features

Classifier is trained with SGD and a batch size of 1024 for 100 epochs on ImageNet
No is applied

For each model, the learning rate is set by sweeping

During training: resize crops and horizontal flips, during : central crops
concatenate [ last layers 1 2 4 6

: feature-based
representation dim 384 768 1536 2304

concatenate [CLS] tokens viT.5/16 linear eval 761 766 770 77.0

: pooling strategy [CLS] tok. concatenate [CLS] tok.
CNN—Sfy le only

and avgpooled patch tok.

representation dim 768 1536

[CLS] & AVG POOL
ViT-B/16 linear eval 78.0 78.2

(k-NN self-sup protocol) Z. Wu et al., "Unsupervised feature learning via non-parametric instance discrimination", CVPR (2018)
(BERT) J. Devlin et al., "Bert: Pre-training of deep bidirectional transformers for language understanding”, NAACL-HLT (2019)
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Experiments - ImageNet

Comparing with the same architecture

Compare to existing self-supervised methods with the same architecture

Comparing across architectures

Method Arch. Param. 1m/s Linear k-NN

Supervised RNS50 23 1237 793 79.3
SCLR RNS50 23 1237 69.1  60.7
MoCov2 RNS50 23 1237 71.1 61.9
InfoMin RNS50 23 1237 73.0 653
BarlowT RNS50 23 1237 73.2 66.0
OBoW RNS50 23 1237 738 61.9
BYOL RNS50 23 1237 744  64.8
For RN50  DCv2 RN50 23 1237 752 67.1
DINO is SwAV RNS50 23 1237 753  65.7
competitive DINO RNS50 23 1237 [S WOES major gap

Supervised VIT-S 21 1007 798 79.8
BYOL™ VIT-S 21 1007 714  66.6
For ViT-S MoCov2* VIT-S 21 1007 7277 644
DINO SWAV™ VIT-S 21 1007 735 66.3
yields gains DINO VIT-S 21 1007 FFRO| [4S minor gap

* baseline re-implemented by DINO authors
Param. - model parameters (millions) - on NVIDA V100 (batch size 128)

Compare to existing self-supervised methods with different architectures

Method Arch. Param. 1im/s Linear k-NN

Comparison across architectures
SCLR RN50w4 375 117 76.8 69.3
SwAV RN50w2 93 38 773 673
BYOL RN50w2 93 38 774 -
DINO ViT-B/16 85 312 782 76.1
SwAV RNS0wS 586 76 785 67.1
BYOL RN50w4 375 117  78.6 —
fower BYOL RN200w2 250 123 79.6 739
DINO VIT-S/8 21 180 79.7 78.3 :
params — SCLRv2 RNI5S2w3+SK 794 46 798 731 [ 7*°
DINO ViT-B/8 85 63 80.1 774

reduced

patch
reduced

patch

size,

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) (BarlowT) J. Zbontar et al., "Barlow twins: Self-supervised learning via redundancy reduction", ICML (2021)

H. Touvron et al., "Training data-efficient image transformers & distillation through attention”, ICML (2021) (OBoW) S. Gidaris et al., "Obow: Online bag-of-visual-words generation for self-supervised learning", CYPR (2021)

(SCLR) T. Chen et al. "A simple framework for contrastive learning of visual representations" ICML (2020) (BYOL) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurlPS (2020)

(MoCov2) X. Chen et al., "Improved baselines with momentum contrastive learning", arxiv (2020) (DCv2/SwAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)

(InfoMin) Y. Tian et al. "What makes for good views for contrastive learning?" NeurlPS (2020)



Experiments - Properties of Self-Supervised ViT

Image Retrieval

Compare on Revisited Oxford and Revisited Paris retrieval datasets

Pretrain  Arch. Pretrain

ROx

RPar

M

H M

H

Sup. RN101+R-MAC ImNet

49.8

18.5 74.0

52.1

Sup. ViT-S/16 ImNet
DINO ResNet-50 ImNet
DINO ViT-S/16 ImNet
DINO ViT-S/16 GLDv2

33.5
354
41.8
S1.5

8.9 63.0
11.1 55.9
13.7 63.1
24.3 75.3

37.2
27.5
34.4
51.6

- medium split H - hard split

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)

(Paris) J. Philbin et al., "Lost in quantization: Improving particular object retrieval in large scale image databases”, CYPR (2008)
(Revisited Oxford/Paris) F. Radenovié et al., "Revisiting oxford and paris: Large-scale image retrieval benchmarking", CVPR (2018)

GLDv2: Google Landmarks Dataset v2

Evaluate on

Copy detection

(recognise images distorted by blur, insertions etc.)

Benchmark: Copydays dataset (strong subset) |0l A= 1010],7 0 151 olel o] 5

DINO features: concat [CLS] token with GeM pooled patch tokens :

Method

Arch.

Dim.

Resolution

mAP

Multigrain
Multigrain

ResNet-50
ResNet-50

2048
2048

2247
largest side 800

75.1
82.5

Supervised
DINO
DINO

ViT-B/16
ViT-B/16
ViT-B/8

1536
1536
1536

2242
2242
3202

76.4
81.7
85.5

(Copydays dataset) M. Douze et al., "Evaluation of gist descriptors for web-scale image search”, CIVR (2009)
(GeM) F. Radenovié, et al. "Fine-tuning CNN image retrieval with no human annotation”, TPAMI (2018)
(MultiGrain) M. Berman et al., "Multigrain: a unified image embedding for classes and instances", arxiv (2019)

(Retrieval baseline features) J. Revaud et al., "Learning with average precision: Training image retrieval with a listwise loss", ICCY (2019)
(GLDv2) T. Weyand et al., "Google landmarks dataset v2-a large-scale benchmark for instance-level recognition and retrieval", CYPR (2020)



Experiments - Semantic Layout of Scenes

Qualitative Results Video Instance segmentation

Self-attention from [CLS] token on heads of the last layer of ViT-S/8 Evaluate video instance segmentation on DAVIS-2017

Protocol: segment scenes with nearest neighbours between frames

Method Data Arch. (T&F)m Im  Fm

Supervised
ImageNet INet VIT-S/8 66.0 63.9 68.1
STM I/D/Y RNS50 81.8 79.2 84.3

Self-supervised

CT VLOG RN50 48.7 46.4 50.0
MAST YT-VOS RNI18 65.5 63.3 67.6
STC Kinetics  RNI18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 634
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1
DINO INet ViT-B/8 71.4 679 74.9

¥, - mean region similarity - mean contour-based accuracy

Frame resolution: 480 pixels

As DINO is not fine-tuned it must have retained some spatial information

Attention appedrs to be class spemflc (DAVIS-2017) J. Pont-Tuset et al., "The 2017 DAVIS challenge on video object segmentation", arxiv (2017)

(STM) S. W. Oh et al., "Video object segmentation using space-time memory networks", ICCV (2019)
Image credits/References: (CT) X. Wang et al., "Learning correspondence from the cycle-consistency of time," CVPR (2019)

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) (MAST) Z. Lai et al., "MAST: A memory-augmented self-supervised tracker", CYPR (2020)
(STC) A. Jabri, "Space-time correspondence as a contrastive random walk", NeurIPS (2020)



Experiments - probing the self-attention map

Qualitative Results Comparing supervised vs DINO segmentation

Self-attention from [CLS] token (different heads, different colours) taken from Visualise masks by thresholding [CLS] self-attention maps to keep 60% of mass

the last layer of ViT-S/8 Supervised

Quantify mask quality via Jaccard similarity between ground-truth and

masks on Pascal YOC 2012

Random Supervised DINO

ViT-S/16 22.0 27.3 45.9
VIT-S/8 21.8 23.7 44.7

Note: can obtain segmentations from self-sup. CNNs, but need dedicated

methods e.g. using gradients/attribution propagation, Gur et al. (2021)

Image credits/References: (Pascal YOC) M. Everingham et al., "The pascal visual object classes (voc) challenge”, 1JCV (2010)
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) S. Gur et al., "Visualization of supervised and self-supervised neural networks via atiribution guided factorization", AAAI (2021)



Experiments - visualisation of reference points

Qualitative Results

Visualisations of self-attention from last block of a ViT-S/8 model trained with DINO

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)



Experiments - class visualisation with -SNE

Qualitative Results

Represent each ImageNet
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Image credits/References:
L. Van der Maaten et al., "Visualizing data using +-SNE", JMLR (2008)
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)




Experiments - transfer learning on downstream tasks

Transfer learning

To evaluate feature quality, DINO features are compared to supervised features with the same architecture trained with ImageNet labels

The transfer learning protocol follows DeiT across 8 tasks and compares to the supervised baseline provided by DelT

Cifar;y Cifarigop INat;gs INati9 Flwrs Cars INet

ViT-S/16
Sup. 99.0 89.5 70.7 76.6 98.2 92.1 79.9
DINO 9.0 905 720 782 985 93.0 81.5
ViT-B/16
Sup. 990 90.8 732 7777 984 92.1 81.8

DINO 99.1 91.7 726 78.6 98.8 93.0 82.8

As observed in previous works, self-supervised features appear to transfer better than supervised features

DINO attains notable gains on ImageNet itself

Image credits/References:

(DeiT) H. Touvron et al., "Training data-efficient image transformers & distillation through attention", ICML (2021) (Cars) J. Krause et al., "3d object representations for fine-grained categorization”, ICCVW (2013)
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) (INet) O. Russakovsky et al., "Imagenet large scale visual recognition challenge”, JCV (2015)
(Cifar,,/Cifar,,) A. Krizhevsky, "Learning multiple layers of features from tiny images", (2009)

(INat;s/INat,y) G. Horn et al., "The inaturalist challenge 2018 dataset". arxiv (2018)

(Flwrs) M-E. Nilsback et al., "Automated flower classification over a large number of classes" ICYGIP (2008)



Experiments: low-shot learning on ImageNet

Low-shot learning on ImageNet

Evaluate features on low-shot learning on ImageNet

Train (using cyanure) on frozen features

Top 1
Method Arch Param. 1% 10%

Self-supervised pretraining with finetuning

UDA RNS50 23 - 68.1
SimCLRv2 RNS50 23 579 684
BYOL RNS50 23 53.2 68.8
SwAV RNS50 23 53.9 70.2
SimCLRv2 RN50w4 63.0 744
BYOL RN200w2 712  T1.7

Semi-supervised methods

SimCLRv2+KD RN50 23 60.0 70.5
SwAV+CT RN50 23 — 70.8
FixMatch RN50 23 - 71.5
MPL RN50 23 - 73.9
SimCLRv2+KD RN152w3+SK 794 76.6  80.9

Frozen self-supervised features
DINO -FROZEN VIT-S/16 21 64.5 722

Image credits/References:

J. Mairal, "Cyanure: An open-source toolbox for empirical risk minimization for python, ct++, and soon more”, arxiv (2019)  (SwAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments”, NeurlPS (2020)

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) (SWAV+CT) M. Assran et al., "Recovering petaflops in contrastive semi-supervised learning of visual representations", arxiv (2020)
(UDA) Q. Xie, et al., "Unsupervised data augmentation for consistency training”, NeurlPS (2020) (FixMatch) K. Sohn et al., "Fixmatch: Simplifying semi-supervised learning with consistency and confidence", NeurlPS (2020)
(SimCLRv2) T. Chen et al., "Big self-supervised models are strong semi-supervised learners", NeurlPS (2020) (MPL) H. Pham et al., "Meta pseudo labels", CVPR (2021)

(BYOL) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurlPS (2020)
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Ablation studies

Framework components

Which components contribute to DINO's performance?

Train for 300 epochs on ImageNet

Self-supervised backbone influence

Method ‘Mom. SK MC Loss Pred. k-NN

DINO CE 72.8
CE 0.1
CE 72.2
CE 67.9
52.6
CE 71.8

66.6
62.0
CE 64.7

Backbones: Train both ResNet-50 and ViT-S/16 for 300 epochs on ImageNet

ResNet-50 ViT-small
Method Linear k-NN Linear k-NN

MoCo-v2 71.1 62.9 71.6 62.0
BYOL 72.7 65.4 71.4 66.6
SwAV 74.1 65.4 71.8 64.7

DINO 74.5 65.6 76.1 72.8

BYOL
MoCov?2
SWAV

X
X
v
X
X
X
X
X
v

SR NN IR N NN

DINO is particularly effective for self-supervised training of vision transformers.

Mom. - Momentum Pred. - Student Predictor
SK - Sinkhorn-Knopp - Linear probe

MC - Multi-Crop

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)

(SwAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)
(BYOL) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning”, NeurlPS (2020)
(MoCov2) X. Chen et al., "Improved baselines with momentum contrastive learning", arxiv (2020)



Ablation studies - methodology comparison

Relationship to MoCo-v2 and BYOL Relationship to SwWAY

Fine-grained analysis of components (top-1 accuracy) Eftect of and operation

Method Momentum Operation Top-1

DINO v Centering 76.1
Softmax (batch) 75.8

Sinkhorn-Knopp 76.0

Centering 0.1

Softmax (batch) 72.2

Sinkhorn-Knopp  71.8

Method Loss multi-crop Center. BN Pred. Top-1

CE v 76.1
MSE v 62.4
CE v 75.6
CE 72.5

MoCov2 INCE 71.4
INCE 73.4

BYOL MSE 71.4
MSE 0.1
MSE 52.6
MSE v 64.8

Details on Softmax(batch) variant

Implementation of used in SWAV:

# x is n-by-K
# tau is Sinkhorn regularization param
Xx = exp(x / tau)
for _ in range (num_iters): # 1 iter of Sinkhorn
total weight per dimension (or cluster)
c = sum(x, dim=0, keepdim=True)
X /= cC

Center. - Centering operator
BN - Batch Normalization in the projection heads
Pred. - Student Predictor

# total weight per sample

n = sum(x, dim=1, keepdim=True)

# x sums to 1 for each sample (assignment)
X /= n

Image credits/References: . . :
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) Softmax(batch) variant (eqqulem to num_ite rs=1):

(BYOL) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurlPS (2020)
(MoCov2) X. Chen et al., "Improved baselines with momentum contrastive learning", arxiv (2020)

(SWAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)
(Sinkhorn-Knopp) M. Cuturi, "Sinkhorn distances: Lightspeed computation of optimal transport", NeurlPS (2013)

softmax (x / tau, dim=0)
/= sum(x, dim=1, keepdim=True)




Ablation studies - k-NN performance and pretraining

k-NN classification vs linear probe performance Self-supervised ImageNet pretraining of ViT

Compare and ViT-S (frozen DINO features) Compare supervised ViT-B/16 on ImageNet

No data augmentation is used when extracting features Pretraining

. method data res. tr.proc. Top-1
Logistic k-NN g P

RN50 ViIT-S A RN50 ViT-S A

Inet 100% 72.1 7577 3.6 675 745 70
Inet 10% 67.8 722 44 593 691 938
Inet 1% 55,1 645 94 472 613 14.1
Pl. 10% 534 521 -13 469 486 1.7
Pl. 1% 46.5 46.3 -0.2 392 413 2.1
VOCO7 889 89.2 03 849 88.0 3.1
FLOWERS 956 964 0.8 879 89.1 1.2

Average A 2.4 5.6

Pretrain on additional data
MPP JFT-300M 384 ViT 79.9
Supervised JFT-300M 384 ViT 84.2

Train with additional model
Rand. init. - 224 DeiT 83.4 (RegNetY)

No additional data nor model

Rand. init. - 224 ViT 77.9
Rand. init. - 224 DeiT 81.8
Supervised ImNet 224 Deil 81.9
DINO ImNet 224 DeiT 82.8

res. - image resolution

DINO ViT-S features yield a particularly good kNN classitier tr. proc. - training procedure (data augmentation and optimisation)

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) (ViT) A. Dosovitskiy, et al. "An image is worth 16x16 words: Transformers for image recognition at scale", ICLR (2021)
(Inet) O. Russakovsky et al., "Imagenet large scale visual recognition challenge”, 1JCV (2015) (DeiT) H. Touvron et al., "Training data-efficient image transformers & distillation through attention", ICML (2021)
(PI) B. Zhou et al., "Learning deep features for scene recognition using places database", NeurIPS (2014) (RegNetY) I. Radosavovic et al., "Designing network design spaces", CVPR (2020)

(VOCO07) M. Everingham et al., "The pascal visual object classes (voc) challenge", 1JCV (2010)
(FLOWERS) M-E. Nilsback et al., "Automated flower classification over a large number of classes" ICVGIP (2008)



Ablation studies - patch size

Influence of patch size

Compare k-NN performance of ViT-S and ViT-B at different patch sizes
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Smaller patches yield gains with

Smaller patches result in lower throughput: 44 ims/s (5x5) vs 180 ims/s (8x8)

Image credits/References:
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)



Overview

L2-normalisation bottleneck

Like SimCLR, DINO benefits from a projection head

w/o 12-bottleneck

Follow an approach inspired by SwAV:

* n-layer

g(f)

(2048D hidden units, GELU activations) e

e Last layer (no GELU) [, norm, WeightNorm on FC

projection head h

\_

BxK \

n-layer MLP

BN-free system

No batch norm is used in DINO ViT projection heads

System is therefore "BN-free"

VIT-S, 100 epochs heads w/o BN  heads w/ BN

T B x f‘)’é’»l/

f

|

X Bx3x224x224

# proj. head linear layers

projection head h

w/ 12-bottleneck

gx)

Y

linear layer

T Bx256
12 normalization

T B x 256

n-layer MLP

\ T Bx3 JH/

f

T

X Bx3x224x224

Evaluate DINO ViT-S/16 on ImageNet (K = 4096)

2 3 4

k-NN top-1 69.7 68.6

BN-free: simpler and no need for

Image credits/References:

w/ 12-norm bottleneck
w/o 12-norm bottleneck

62.2 68.0 693

61.6 629 0.1 0.1

Takeaway: the |2 bottleneck is essential

Ablation studies - projection heads

Output dimension

Compare projection head output dimensions

For each output dimension size,

is 256D

K 1024 4096 16384 65536 262144
E-NN top-1 67.8 693  69.2 69.7 69.1

Using a large dimensionality helps (up to a point)

GELU activations

Compare projection head activation functions
Note: by default GELU is used in

VIT-S, 100 epochs heads w/ GELU heads w/ ReLU
k-NN top-1 69.7 63.9

GELU is preferable to RelLU for the projection head

(SimCLR) T. Chen et al., "A simple framework for contrastive learning of visual representations", ICML (2020)

(WeightNorm) T. Salimans et al., "Weight normalization: A simple reparameterization to accelerate training of deep neural networks" NeurlPS (2016)
(Batch Norm) S. loffe et al., "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML (2015)



Ablation studies - choice of teacher network

Training dynamics

Building the teacher from the student

ViT architecture : ResNet-50 architecture

Various strategies can be used to build the from the student

W O\
nh O

Performance is compared on ImageNet top-1accuracy (with k-NN)

m= Student mem Student

Teacher Top-1

n

Teacher Teacher

ImageNet top-1 acc
N
S

N
-
-]

ImageNet top-1 acc.

Student copy 0.1 ' I re—" —
Previous iter 0.1 100 200 300

epochs epochs

100

Previous epoch  66.6

Momentum 72.8 : : : :
Interpretation: momentum teacher in DINO is a form of averaging

This provides a (higher-quality) that guides the student

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)
D. Ruppert, "Efficient estimations from a slowly convergent Robbins-Monro process" (1988)

B. T. Polyak et al., "Acceleration of stochastic approximation by averaging", SICON (1992)



Ablation studies - avoiding collapse

Evolution of distributions

Avoiding the collapse of representations

There are two forms of collapse that can occur during pretraining: Entropy of the teacher KL between teacher and student

* collapse to a along all dimensions
* collapse to a vector dominated by

Centring avoids collapse along one dimension but encourages uniform output

Sharpening avoids uniform output but encourages collapse along one dimension

Target Entropy
S VA~ O ®

)
O
c
)
o
-
0

2

e

el

\V4

h_____i

100 0
epochs epochs

-

This can be seen by decomposing the cross-entropy between the distributions:

H(P,, P,) = h(P,) + Dg; (P, | P, . :
(P, Py) (Py) k1(P;| Py) === sharpening == = centering both

When KL term is equal to zero, the two distributions are identical
The entropy converges to either O (no centring) or —log(1/K) (no sharpening)

This indicates the outputs are constant, so a collapse has occurred

KL-divergence converges to zero if either operation is missing

Image credits/References:
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)



Ablation studies: optimisation hyperparameters

Online centring Supervised vs self-supervised self-attention maps

Influence of the for centre updates:

Compare supervised vs self-supervised VIT-5/16 weights

m 0 0.9 099 0.999 . . Random weights
ViT-S/16 self-attention for Supervised
kE-NN top-1 69.1 69.7 694 0.1 Collapsel

Evaluate on Pascal YOC 2012 DINO

DINO w/o multicro
Threshold to keep a fixed % of mass MoCo-v?2 d

BYOL
SwWwAV

Shqrpening Compute Jaccard similarity to ground truth

Influence of the teacher softmax temperature 7,

Tt 0 0.02 0.04 0.06 0.08 0.04 — 0.07 |ineqrwqrmup
k-NN top-1 439 66.7 69.6 68.7 0.1 69.7 for 30 epochs Number of ViT-S heads

Influence of number of ViT-S on accuracy and throughput

#heads dim dim/head #params im/sec Kk-NN

6 384 64 21 1007 72.8
Influence of training 8 384 48 21 971 73.1

. . 12 384 32 21 927 73.7
DINO ViT-S 100-ep 300-ep 800-ep Note: for main comparison BYOL 16 384 24 21 260 73.8

k-NN top-1 70.9 79 8 74.5 is only trained for 300 epochs

Longer training

For all other experiments in the paper, 6 heads are used.

Image credits/References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021) (BYOL) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurlPS (2020)
(Pascal VOC) M. Everingham et al., "The pascal visual object classes (voc) challenge”, 1JCV (2010) (SwAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)
(MoCo-v2) X. Chen et al., "Improved baselines with momentum contrastive learning", arxiv (2020)



Range of scales

Generate views with RandomResizedCrop
Select a scale hyperparameter, s:
2 global views in scale (s, 1), resize to 224 x 224

*6 with scale (0.05, s), resize to 96 X 96

Arbitrary choice: scale ranges

0.05, s), (s, 1), s:  0.08 0.16 0.24 032 048
k-NN top-1 65.6 680 69.7 698 695

Note: best value ( ~ 0.3) is higher than SWAV ( ~ 0.14)

Image credits/References:

Multi-crop for different frameworks

ViT-S/16 for 300 epochs with various

Crops 2 X 2242 2 x 2242 + 6 x 962

eval k-NN linear k-NN linear

BYOL 66.6 714 59.8 64.8
SwAV 60.5  68.5 64.7 71.8
MoCo-v2 620 71.6 65.4 73.4
DINO 67.9 7235 72.7 75.9

Multi-crop does not benefit all frameworks equally

DINO sees a major boost, while BYOL does worse

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)

(SWAV) M. Caron et al., "Unsupervised learning of visual features by contrasting cluster assignments", NeurlPS (2020)
(BYOL) J-B Grill et al., "Bootstrap your own latent-a new approach to self-supervised learning", NeurIPS (2020)
(MoCo-v2) X. Chen et al., "Improved baselines with momentum contrastive learning", arxiv (2020)

Ablations: multi-crop strategy

Multi-crop with BYOL

Study BYOL performance with/without multi-cropping
BYOL (ViT-S)

65 f

260/

3551
>
g'SO-
4504
0 100 200 300
epochs

Consistent effect across a range of hyperparameters



Compute requirements and batch sizes

Training with small batches

Computational requirements for DINO

Measure time/GPU memory used to run ViT-S/16 on two 8-GPU machines Investigate the influence of batch size on feature quality

100 epochs 300 epochs Evaluate ImageNet top-1 with k-NN after 100 epochs without multi-crop

multi-crop top-1 time top-1 time mem. Scale learning rate linearly with batch size (Goyal et al., 2019)

2 x 2242 67.8 153h [725 459h 9.3G
2x224%2 + 2x96% 71.5 17.0h 745 51.0nh 10.5G
2x224% + 6x96% 73.8 20.3h 759 60.9h 12.9G
2x224% + 10x 962 [74.6 242h [76.1 72.6h 15.4G

bs 128 256 512 1024
top-1 579 59.1 59.6 599

Multi-crop improves the accuracy/running-time trade off (with

DINO still works well with (some re-tuning required)

Gains due to additional views see diminishing returns Note: this differs from (for which batch size is critical)

Image credits/References:
M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)
P. Goyal et al., "Accurate, large minibatch sgd: Training imagenet in 1 hour", arxiv (2017)
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Summary

DINO summary

DINO can train a ViT with self-supervision to reach a comparable performance with
the best CNNs

Two additional properties emerge from DINO:

* high-quality features for k-NN classification

* features contain information about scene layout (useful for segmentation)

DINO may provide a route to build a BERT-like model on ViT

Future work: self-supervised pretraining on uncurated images (Goyal et al., 2022)

References:

M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)

(BERT) J. Devlin et al., "Bert: Pre-training of deep bidirectional transformers for language understanding", NAACL-HLT (2019)

P. Goyal et al., "Vision models are more robust and fair when pretrained on uncurated images without supervision", arxiv (2022)



