
Brief guide to hash tables What they are How they are implemented

Hash tables
Data structures for fast search, insertion & deletion

Introduced by H. P. Luhn at IBM (1953)

References/Notes/Image credits:
H. Stevens, "Hans Peter Luhn and the birth of the hashing algorithm", IEEE spectrum (2018)
(Luhn photo) https://researcher.watson.ibm.com/researcher/view_page.php?id=6990
"Associative Array"/"Dictionary" can replace "Map" https://en.wikipedia.org/wiki/Associative_array
("keys") D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", p392 (1998)

MapAbstract Data Types

Complexity (for data items)n

In typical conditions, hash tables ops are fast:

Avg. case: search, insert, delete

Worst case: search, insert, delete

Storage complexity of hash tables:

→ O(1)
→ Θ(n)

Θ(n)

key
benefit

Abstract Data Type: Set

insert object x into the Setinsert(x)

Collection of objects with operations:

delete(x) remove object x from the Set

search(key) get x if x.key = key, else

SetSuited for

Abstract Data Type: Map

add (key, value) pair to Mapinsert(key, value)

Collection of (key, value) pairs with operations:

delete(key) remove (key, value) pair from Map

search(key) get value if key present, else

raise
exception

raise
exception

each object x
has a key: x.key

We focus on Sets (can achieve Map behaviour
with x.value attribute for each object)

Keys must be unique
for Sets and Maps

https://en.wikipedia.org/wiki/Associative_array

Unused slots have a value of None:

Example operations on

Suppose the objects we'll store

have unique integer keys

Build a big array with slots:

n x0, …, xn−1

k0, …, kn−1

ki ∈ {0,…, m − 1}
m

Idea: search by index
Idea: replace search with array indexing O(1)

References/Notes:
(search by location lookup) D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 6.4, (1974)
(Direct-address table) T. Cormen et al., "Introduction to algorithms", Chap 11.1, MIT press, (2022)

Universe, , is set of possible keysU

Direct-address table

We search, insert, delete using array in

What happens if ?

Suppose we want to store 5 IPv6 addresses

Our universe size is

 1K trillion trillion 1TB hard drives!

O(1)
|U | ≫ n

|U | = 2128

>

Lots of wasted space!

A hash table uses a function, , to compute slots
 is a hash function

Goal: design to shrink array size

h
h : U → {0,…, m − 1}

h

slot h(ki)hash function, h

U = {0,…, m − 1}

Direct-address table

Hash table

IPv6 address example borrowed from M. Levin, "Data Structures", Coursera (2022)
Price: £28 estimate for1TB WD Seagate HGST HP 3.5" SATA Internal Hard Drive HDD PC CCTV, (ebay, Sep 2022)

…0 1 m − 12 3 4
ki

ki

m = Θ(n)

m = |U |big array

small array

slot ki

xix0 (k0 = 2) x1 (k1 = 4)

delete x0 search k = 4Insert x0, x1

x0

 GBP> 28 ⋅ 1027

xi
x1

x1

()m = Θ(n)
xi

xi

x2x1x0

Two key requirements for our hash function:

1. Fast to compute

2. Minimise collisions

Ideal rolls a fair -sided die for each :

an independent uniform random hash function

How to get randomness from nonrandom data?

h(k) m k

Hash functions
Suppose

A basic hash function:

U ⊂ ℤ
h(k) = k mod m

References/Notes/Image credits:
(Requirements/randomness) D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 6.4 (1998)
(Hash functions) T. Cormen et al., "Introduction to algorithms", Chap 11.3, MIT press, (2022)
J. Erickson, "Algorithms" http://algorithms.wtf/ "Lecture 5: Hash Tables" (2019)
J. L. Carter et al., "Universal classes of hash functions", ACM STOC (1977)

and our hash table has slotsm

 with h(ki) = h(kj) ki ≠ kj

(k0 = 2) (k1 = 8)x0 x1 (k2 = 23)x2

m = 5 collision!

StaticDivision method

Multiplication method

Universal family :H

Pick a prime number

p > |U |
ha,b(x) ≜ ((ax + b) mod p) mod m

Hp,m = {ha,b |a ∈ ℤ*p , b ∈ ℤp}

h(k) = k mod m
helps (a bit) if is primem

Following T. Cormen et al., "Introduction to algorithms", Chap 11.3, MIT press, (2022), we use the notation that
(Bitcoin logo) https://commons.wikimedia.org/wiki/File:Bitcoin_logo.svg#/media/File:Bitcoin.svg
J-P Aumasson et al., "SipHash: a fast short-input PRF", ICC (2012)
https://tenthousandmeters.com/blog/python-behind-the-scenes-10-how-python-dictionaries-work/
C. Heimes, "PEP 456 – Secure and interchangeable hash algorithm", https://peps.python.org/pep-0456/ (2013)

ℤ*p = {1,…, p − 1}

h(k) = ⌊m ⋅ (Ak mod 1)⌋

Cryptographic

Pre-image resistance

Collision resistance

(typically slower)

0 1 2 3 4
(k2 = 23)(k1 = 8)(k0 = 2)

"Input data is not random! So good hash

functions must be random!" J. Erickson

Choose A ∈ (0,1)

vulnerable to unfavourable key
distributions (many collisions)

Random

Ph∈H[h(ki) = h(kj)] ≤ 1
m

∀i ≠ j

A universal family

(, are "salts")a b less vulnerable

Applications
Hash tables String search

Signatures Digests Proof-of-work

CPython: SipHash (str/byte)

Passwords

still vulnerable to interactive attacks

prevent DoS

http://algorithms.wtf/
https://commons.wikimedia.org/wiki/File:Bitcoin_logo.svg#/media/File:Bitcoin.svg
https://tenthousandmeters.com/blog/python-behind-the-scenes-10-how-python-dictionaries-work/
https://peps.python.org/pep-0456/

Chaining

References/Notes:
See J. Erickson, "Algorithms" http://algorithms.wtf/ "Lecture 5: Hash Tables" (2019) for a more detailed proof
or T. Cormen et al., "Introduction to algorithms" MIT press, Chap 11.2 (2022) for an extended analysis

Chaining: a simple way to handle collisions

x2

x1

x0x0
x1
x2

m = 5
0 1 2 3 4

(k0 = 2)

(k2 = 23)
(k1 = 8)

Search for (k = 8)

Doubly-linked list

Delete x2

Insert

(k3 = 98)x3 (k3 = 98)x3

x1

Average scenario

Define the load factor of table:

Assume our hash function is universal

Collision probability

Average cost: (hashing + chain search)

α ≜ n
m

≤ 1/m
/(chain length) = n/m = α

Θ(1 + α)Worst case scenario

All keys collide all objects in same slot

Search is then with linked lists

n ⟹
Θ(n) Average cost of successful search

Similarly to unsuccessful search: Θ(1 + α)

(for search)

(cost of unsuccessful search)

slots

items

(k1 = 8)
(k2 = 23)

(k0 = 2)

(k3 = 98)
h(k) = k mod m

http://algorithms.wtf/

Open addressing
Open addressing: chain-free collision handling

Coined by William W. Peterson in 1957

The simplest variant is linear probing:

References/Notes/Image credits:
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 6.4, (1974)
W. W. Peterson, "Addressing for random-access storage." IBM journal of Research and Development (1957)
https://en.wikipedia.org/wiki/W._Wesley_Peterson#/media/File:W._Wesley_Peterson.jpg
(Open addressing) T. Cormen et al., "Introduction to algorithms", Chap 11.4, MIT press, (2022)
R. P. Brent, "Reducing the retrieval time of scatter storage techniques", Communications of the ACM (1973)
(Robin Hood) P. Celis et al., "Robin hood hashing" Symposium on Foundations of Computer Science (1985)
(CPython hash tables) https://tenthousandmeters.com/blog/python-behind-the-scenes-10-how-python-dictionaries-work/

m = 5
0 1 2 3 4Insert

Search for (k = 98) Delete x2

Analysis: number of probes in unsuccessful search ()

Assume independent uniform permutation hashing

Max probes:

α < 1

1
1 − α

CPython uses pseudorandom probing + heuristics

Maximum load factor of 2/3 (before resize)

Optimised for: object attribute/method lookups

Probe sequences

produce permutation of

Double hashing:

For a permutation, and must be coprime

(0,1,…, m − 1)
h(k, i) = (h1(k) + ih2(k)) mod m

h2(k) m

primary clustering
x2

x1

x0x0
x1
x2

(k0 = 2)

(k2 = 23)
(k1 = 8)

(k3 = 98)x3 (k3 = 98)x3

(k1 = 8)
(k2 = 23)

(k0 = 2)

(k3 = 98)
h(k) = k mod m

Dx3

Open addressing schemes

x2

Re-ordering schemes Brent's method Robin Hood

= 1 + α + α2 + α3 + …
at least one

more than 1

more than 2

more than 3

position in probe sequence

reduce average reduce variance

Linear probing is not so bad in practice (caching)

Appendix
Hard drives and direct-address tables

There are possible IPv6 addresses

A 1TB hard drive bytes

The size of slots depends on the implementation

Supposing 8 bytes per slot, then we require

 1TB hard drives

or one thousand trillion trillion 1TB hard drives

2128

≈ 240

23 ⋅ 2128/240 = 291 ≈ 1027

