
PromptSource: IDE + repo for natural language prompts
What it is Why it is needed

Paper: S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts",
ACL Demo (2022)

Motivation

References:
T. Brown et al., "Language models are few-shot learners", NeurIPS (2020)
T. Schick et al., "It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners", NAACL-HLT (2021)
Le Scao et al., "How many data points is a prompt worth?", NAACL-HLT (2021)

Prompting: represent task as an utterance

E.g. text classification prompt: "This video

describes PromptSource. It is about..."

maps to
class label

enables adapting LMs to ad hoc tasks

sample efficiency in low data regimes

Prompt
applications

"NLP"

Prompt engineering can have a major influence

Training on prompts can enable task generalisation
E. Perez et al., "True few-shot learning with language
models", NeurIPS (2021)
V. Sanh et al., "Multitask Prompted Training Enables
Zero-Shot Task Generalization", ICLR (2021)

But how can we enable users to:
create refine share prompts?

PromptSource IDE (Web GUI) Shared repo

Elements of design:
Template language

Prompt management

Community-driven standards

simple but flexible

support browsing/iteration

evolved guidelines

Stats: 2087 prompts across 180 datasets

Public Pool of Prompts (P3)
*P3 stats from September 2022

Prompt creation traditional NLP annotation≠

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)

Functions, not labels

Datasets, not examples

Variation is desirable

Prompts are functions that map examples to input/target pairs

Unlike labels, prompt design must consider all dataset examples

Label variation generally undesirable but prompt variation has benefits

What makes prompt creation different?

 - how expressive should format be?

- what interface will support this?

- how can this be supported?

The PromptSource workflow

S1: Exploration S2, S3, S4: Creation S5: Review

Image credits/Reference:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural
Language Prompts", ACL Demo (2022)
S. Bowman et al., "A large annotated corpus for learning natural language inference", EMNLP (2015)

Example Task: design prompt query for SNLI

Require answers that can map to SNLI classes

NLI: premise hypothesis

entailment contradiction neutral ?

S1: Exploration S2: Writing S3: Documentation

S4: Iteration (with variety)

S5: Review

PromptSource plays nicely with Datasets
Practical usage

Image credits/Reference:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)
Q. Lhoest et al., "Datasets: A community library for natural language processing", EMNLP Demo (2021)

from promptsource.templates import DatasetTemplates
from datasets import load_dataset

Import libraries

Fetch prompt by name
prompts = DatasetTemplates("snli")
prompt_key = "based on the previous passage"
p = prompts[prompt_key]

Apply to an example
result = p.apply(example)
print("INPUT: ", result[0])
print("TARGET: ", result[1])

A person? Yes, no, or maybe?
Maybe

Load example
dataset = load_dataset("snli", split="train")
example = dataset[0]

Prompt Template Engine: Jinja2

References
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)
(Example dict format) Q. Lhoest et al., "Datasets: A community library for natural language processing", EMNLP Demo (2021)
(Guidelines for prompt authors) https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md

Jinja2 template engine used for prompts

•More flexible vs rule-based generation

•Simpler than pure Python code

Example prompt:
If {{premise}} holds, does {{hypothesis}}
also hold? ||| {{entailed}}

refer to fields in example dictPlaceholder

Separator between condition and completion

Jinja2 enables some fancy string manipulation

In practice, simple manipulations suffice

Useful idioms

Template may not be applicable for all examples

Conditionals can be used to skip examples (empty)

Examples can generate multiple training instances

Elements can be selected with the choice function

Some examples may have multiple valid completions

These can be specified as a separate field

User Interface: Dataset Browsing

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)
https://github.com/streamlit Dataset browsing

Built with

Streamlit

useful for verifying prompts

across many examples

https://github.com/streamlit

User Interface: Sourcing

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022) Prompt sourcing

preview

User Interface: Helicopter view

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)

Helicopter view

Community Guidelines

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)
(Guidelines for prompt authors) https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md

Describing what makes a good prompt is hard

Community guidelines evolved through iteration

Key objectives for guidelines:

•Standardised vocab & minimum requirements

•Highlight common errors & best practices

•Gather useful metadata for future research

The guidelines cover templates and metadata

Encourage:

•explicitly state possible completions

•remove spurious ambiguity from targets

•creation of multiple prompt variants

Require:

•only natural language prompts allowed

•inclusion of metadata (e.g. reference paper)

https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md

Case Studies with PromptSource

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)
V. Sanh et al., "Multitask Prompted Training Enables Zero-Shot Task Generalization", ICLR (2021)
V. Lin et al., "Few-shot learning with multilingual language models", arXiv (2021)
S. Min et al., "MetaICL: Learning to learn in context", arXiv (2021)

Massively multitask prompted training Multilingual prompting Priming (in-context learning)

 (Sanh et al., 2021) uses a

multitask mixture of prompts for

training to boost generalisation

Training and evaluation use

T0

P3

 (Lin et al., 2021) train on

30 languages to study cross-

lingual generalisation

 - quality English prompts

XGLM

P3

MetaICL (Lin et al., 2021) train

on a multitask mixture with in-

context learning examples

Instructions from bring gainsP3

Prior work

Prompting

Prompting

PromptSource aims to support research

with human-written prompts

Originally focused on zero-shot learning

(emphasis on explicit task instructions)

Can be extended for few-shot learning:

Systems for annotating data

 system for text annotation

Web systems

Collaboration for annotators

Leverage active learning

Non-label annotation

Prompts are semi-structured functions

They merit new tools for annotation

References:
S. Bach et al., "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts", ACL Demo (2022)
(GPT-3) T. Brown et al., "Language models are few-shot learners", NeurIPS (2020)
(PET) T. Schick et al., "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference", EACL (2021)
(T0) V. Sanh et al., "Multitask Prompted Training Enables Zero-Shot Task Generalization", ICLR (2021)
(FLAN) J. Wei et al., "Finetuned Language Models are Zero-Shot Learners", ICLR (2021)
(XGLM) V. Lin et al., "Few-shot learning with multilingual language models", arXiv (2021)
(MetaICL) S. Min et al., "MetaICL: Learning to learn in context", arXiv (2021)

(GATE) H. Cunningham, "GATE, a general architecture for text engineering." Computers and the Humanities (2002)
(BRAT) P. Stenetorp et al., "BRAT: a web-based tool for NLP-assisted text annotation", EACL (2012)
(MyMiner) D. Salgado et al., "MyMiner: a web application for computer-assisted biocuration and text annotation",
Bioinformatics (2012)
(YEDDA) J. Yang et al., "YEDDA: A Lightweight Collaborative Text Span Annotation Tool", ACL (2018)
(AlpacaTag) B. Lin et al., "AlpacaTag: an active learning-based crowd annotation framework for sequence tagging", ACL
(2019)
(TreeAnnotator) P. Helfrich et al., "TreeAnnotator: versatile visual annotation of hierarchical text relations", LREC (2018)

GPT-3 PET T0 FLAN

XGLM MetaICL

GATE (2002)

BRAT (2012) MyMiner (2012)

YEDDA (2018)
AlpacaTag (2019)

TreeAnnotator (2018)

