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Applications

Computing: run time/storage of algorithms & data structures


Number theory: bounding approximations

Landau 1909

Bachmann 1894

Knuth 1976

Knuth 1976

Knuth 1976

Name Symbolises Introduced

 - "order less than "o( f(n)) f(n)

 - "order at most "O( f(n)) f(n)

Read

 - "order exactly "Θ( f(n)) f(n)

 - "order at least "Ω( f(n)) f(n)

 - "order greater than "ω( f(n)) f(n)

Big O Notation

Describe function behaviour as input gets large
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Examples: 


 


 

f(n) = 2n2 + n + 3

f(n) = 2n2 + n + 3

Asymptotic upper bounds with O( ⋅ )
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(Asymptotic notation) T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press (2022)

Figure is based on https://en.wikipedia.org/wiki/Big_O_notation#/media/File:Big-O-notation.png

and similar figures in T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press (2022)
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Note: convention is to write 

f(n) ∈ O(g(n))

f(n) = O(g(n))

Informal definition: we say that a function  is  if it grows no faster than f(n) O(g(n)) g(n)

More formal definition

highest order term dominates 
when  grows largen

n

f(n)

cg(n)

n0

 Asymptotic upper bound 

  never goes above                                                 


 whenever 

f(n) cg(n)
n ≥ n0

Claim: 


Pick  then solve for 








  for all  


  for all 

f(n) = O(n2)

n0 = 10 c

2 ⋅ 102 + 10 + 3 ≤ c ⋅ 102

⟹ c ≥ 2.13

f(n) ≤ 2.13n2 n ≥ 10

f(n) ≤ cn2 n ≥ n0

is  O(n2)

is also O(n3)

if there exist positive constants  and  such that c n0 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

rather than f(n) ∈ O(g(n))

f(n) = O(g(n)) find  and n0 c

   allows some algebra= O( ⋅ )

Note: we are considering sets of function that are asymptotically nonnegative (nonnegative for sufficiently large values of )n

https://en.wikipedia.org/wiki/Big_O_notation#/media/File:Big-O-notation.png


                          if there exist positive constants  and  such that c n0

0 ≤ cg(n) ≤ f(n)

 


 

f(n) = 2n2 + n + 3

f(n) = 2n2 + n + 3

Asymptotic lower and tight bounds
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Figures based on https://xlinux.nist.gov/dads/HTML/omegaCapital.html, https://xlinux.nist.gov/dads/HTML/theta.html and similar figures in T. Cormen et al., "Introduction to 
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Equivalence of  to  and : D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", 3rd Ed. (1997) f = Θ(g(n)) f = O(g(n)) f = Θ(g(n))

 f(n) = Ω(g(n))

f(n)

cg(n)

is  Ω(n2)

f(n) = Ω(g(n))

f(n)

c1g(n)

f(n) = Θ(g(n))
is also Ω(n)

Asymptotic lower bound

  is of order at least f(n) g(n)for all n ≥ n0

Examples: 

                          if there exist positive constants ,  and  such that c1 c2 n0

c1g(n) ≤ f(n) ≤ c2g(n)

 f(n) = Θ(g(n))

Asymptotic tight bound

  is of order exactly f(n) g(n)for all n ≥ n0

 f(n) = 2n2 + n + 3 is  Θ(n2)

 Informal:  grows at least as fast as f(n) g(n)

 Informal:  grows exactly as fast as f(n) g(n)

nn0

nn0

Examine highest 
order term

  and 
f(n) = O(g(n)) f(n) = Ω(g(n))
⟺ f(n) = Θ(g(n))

c2g(n)

https://xlinux.nist.gov/dads/HTML/theta.html


                        if for any  there exists  such that c > 0 n0 > 0

0 ≤ f(n) < cg(n)

 f(n) = 2n2 + n + 3

Asymptotic loose bounds
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(Table) http://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf

 f(n) = o(g(n))

is  o(n3)

f(n) = ω(g(n))

but it is not o(n2)

Asymptotic loose upper bound

  is of order less than f(n) g(n)for all n ≥ n0

Example: 

                          if for any  there exists  such that c > 0 n0 > 0

0 ≤ cg(n) < f(n)

 f(n) = ω(g(n))

Asymptotic loose lower bound

  is of order greater than f(n) g(n)for all n ≥ n0

 f(n) = 2n2 + n + 3 is  ω(n)

 Informal:  grows slower than f(n) g(n)

 Informal:  grows faster than f(n) g(n)
nn0

f(n)

cg(n)
f(n) = o(g(n))

f(n)

cg(n)

nn0

Definition

O( ⋅ )
o( ⋅ )

Ω( ⋅ )
ω( ⋅ )

c > 0 n0 > 0  f(n) cg(n)? ? ?
∀

∀
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different growth 
rates

different growth 
rates

but it is not ω(n2)

http://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf


We can write 


Otherwise, since ,


Knuth: RHS of equation does not give more information than LHS


This stems from using 


 really means 

2n2 + n = O(n2)

n2 = O(n2)

f(n) = O(g(n))

O( f(n)) = O(g(n)) O( f(n)) ⊆ O(g(n))

-notation algebraO

References 

(one-way equality) D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", Chap 1.2, 3rd Ed. (1997) 

T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022)

With -notation (and other variants) we can perform some algebraO

but not O(n2) = 2n2 + n

 is "one-way" equality=

(with caution)

RHS is a "crudification"

to denote set membership  f(n) ∈ O(g(n))

Why caution is needed

f(n) = O( f(n)) c ⋅ f(n) = O( f(n))

f(n) = O(g(n)) ⟺ g(n) = Ω( f(n)) f(n) = o(g(n)) ⟺ g(n) = ω( f(n))

O( f(n)) + O( f(n)) = O( f(n)) Example properties

we'd have n2 = 2n2 + n

useful for derivations



Functions commonly used for algorithm analysis

References/image credit 

https://en.wikipedia.org/wiki/Time_complexity
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 - constantΘ(1)

 - logarithmicΘ(log(n))

 - square rootΘ( n)

 - linearΘ(n)

 - linearithmicΘ(n log(n))

 - quadraticΘ(n2)

 - exponentialΘ(2n)

 - factorialΘ(n!)

n

 f(n)

1
log(n)

n

n log nn22nn! n

https://en.wikipedia.org/wiki/Time_complexity
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