Big O notation (and its companions)

References/Notes/Image credits: D. E. Knuth, "Big omicron and big omega and big theta", ACM Sigact News 8.2 (1976) (history of notation) D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", 3rd Ed. (1997) (Donald Ervin Knuth) https://en.wikipedia.org/wiki/Donald_Knuth#/media/File:Donald_Ervin_Knuth_(cropped).jpg P. Bachmann, "Die analytische Zahlentheorie" (1894) (Mike Paterson) <u>https://simons.berkeley.edu/people/michael-paterson</u> (Image of Bachmann) https://commons.wikimedia.org/wiki/File:Paul_Bachmann.jpg (Bob Tarjan) <u>https://en.wikipedia.org/wiki/Robert_Tarjan#/media/File:Bob_Tarjan.jpg</u> E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen" (1909) (Godfrey Harold Hardy) https://en.wikipedia.org/wiki/G._H._Hardy#/media/File:Ghhardy@72.jpg https://en.wikipedia.org/wiki/Edmund Landau#/media/File:Edmund Landau.jpg (John Edensor Littlewood) https://en.wikipedia.org/wiki/John_Edensor_Littlewood#/media/File:John_Edensor_Littlewood.jpg

Applications

Computing: run time/storage of algorithms & data structures

Number theory: bounding approximations

Asymptotic notation Introduced Read o(f(n)) - "order less than f(n)" Landau 1909 Bachmann 1894 O(f(n)) - "order at most f(n)" the second Knuth 1976 $\Theta(f(n))$ - "order exactly f(n)" Knuth 1976 $\Omega(f(n))$ - "order at least f(n)" Knuth 1976 $\omega(f(n))$ - "order greater than f(n)"

Asymptotic upper bounds with $O(\cdot)$

References

Definitions: https://en.wikipedia.org/wiki/Big_O_notation

(Asymptotic notation) T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press (2022) Figure is based on https://en.wikipedia.org/wiki/Big_O_notation#/media/File:Big-O-notation.png and similar figures in T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press (2022)

Note: we are considering sets of function that are asymptotically nonnegative (nonnegative for sufficiently large values of n)

Asymptotic lower and tight bounds

Informal: f(n) grows at least as fast as g(n)

 $f(n) = \Omega(g(n))$ if there exist positive constants c and n_0 such that

 $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

order term

 $f(n) = 2n^2 + n + 3$ is $\Omega(n^2)$ **Examples:** Examine highest $f(n) = 2n^2 + n + 3 \text{ is also } \Omega(n)$

Informal: f(n) grows exactly as fast as g(n)

 $f(n) = \Theta(g(n))$ if there exist positive constants c_1, c_2 and n_0 such that

$$c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all $n \ge n_0$

References

Definitions follow P. Black, "Q", in "Dictionary of Algorithms and Data Structures" and T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022) Figures based on https://xlinux.nist.gov/dads/HTML/omegaCapital.html, https://xlinux.nist.gov/dads/HTML/theta.html and similar figures in T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022)

Equivalence of $f = \Theta(g(n))$ to f = O(g(n)) and $f = \Theta(g(n))$: D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", 3rd Ed. (1997)

T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022) (Table) http://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf

O-notation algebra

References

(one-way equality) D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", Chap 1.2, 3rd Ed. (1997) T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022)

Functions commonly used for algorithm analysis

References/image credit https://en.wikipedia.org/wiki/Time_complexity https://upload.wikimedia.org/wikipedia/commons/7/7e/Comparison_computational_complexity.svg

Image credit: Stable diffusion (lexica.art) https://lexica.art/prompt/16135179-6a39-496a-9a7f-c4a06cdd8ff5

