
Big O notation (and its companions)

References/Notes/Image credits:

(history of notation) D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", 3rd Ed. (1997)

P. Bachmann, "Die analytische Zahlentheorie" (1894)

(Image of Bachmann) https://commons.wikimedia.org/wiki/File:Paul_Bachmann.jpg

E. Landau, "Handbuch der Lehre yon der Verteilung der Primzahlen" (1909)

https://en.wikipedia.org/wiki/Edmund_Landau#/media/File:Edmund_Landau.jpg

Asymptotic notation

O

o

Θ

Ω

ω

"Big Oh"

"Little oh"

"Big Theta"

"Big Omega"

"Little omega"

Asymptotic loose upper bound

Asymptotic upper bound

Asymptotic tight bound

Asymptotic lower bound

Asymptotic loose lower bound

<

≤

=

≥

>

Applications

Computing: run time/storage of algorithms & data structures

Number theory: bounding approximations

Landau 1909

Bachmann 1894

Knuth 1976

Knuth 1976

Knuth 1976

Name Symbolises Introduced

 - "order less than "o(f(n)) f(n)

 - "order at most "O(f(n)) f(n)

Read

 - "order exactly "Θ(f(n)) f(n)

 - "order at least "Ω(f(n)) f(n)

 - "order greater than "ω(f(n)) f(n)

Big O Notation

Describe function behaviour as input gets large

D. E. Knuth, "Big omicron and big omega and big theta", ACM Sigact News 8.2 (1976)

(Donald Ervin Knuth) https://en.wikipedia.org/wiki/Donald_Knuth#/media/File:Donald_Ervin_Knuth_(cropped).jpg

(Mike Paterson) https://simons.berkeley.edu/people/michael-paterson

(Bob Tarjan) https://en.wikipedia.org/wiki/Robert_Tarjan#/media/File:Bob_Tarjan.jpg

(Godfrey Harold Hardy) https://en.wikipedia.org/wiki/G._H._Hardy#/media/File:Ghhardy@72.jpg

(John Edensor Littlewood) https://en.wikipedia.org/wiki/John_Edensor_Littlewood#/media/File:John_Edensor_Littlewood.jpg

primary use

https://commons.wikimedia.org/wiki/File:Paul_Bachmann.jpg
https://en.wikipedia.org/wiki/Edmund_Landau#/media/File:Edmund_Landau.jpg
https://simons.berkeley.edu/people/michael-paterson
https://en.wikipedia.org/wiki/Robert_Tarjan#/media/File:Bob_Tarjan.jpg
https://en.wikipedia.org/wiki/G._H._Hardy#/media/File:Ghhardy@72.jpg

Examples:

f(n) = 2n2 + n + 3

f(n) = 2n2 + n + 3

Asymptotic upper bounds with O(⋅)

References

Definitions: https://en.wikipedia.org/wiki/Big_O_notation

(Asymptotic notation) T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press (2022)

Figure is based on https://en.wikipedia.org/wiki/Big_O_notation#/media/File:Big-O-notation.png

and similar figures in T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press (2022)

D. E. Knuth, "Big omicron and big omega and big theta", ACM Sigact News 8.2 (1976)

Note: convention is to write

f(n) ∈ O(g(n))

f(n) = O(g(n))

Informal definition: we say that a function is if it grows no faster than f(n) O(g(n)) g(n)

More formal definition

highest order term dominates
when grows largen

n

f(n)

cg(n)

n0

 Asymptotic upper bound

 never goes above

 whenever

f(n) cg(n)
n ≥ n0

Claim:

Pick then solve for

 for all

 for all

f(n) = O(n2)

n0 = 10 c

2 ⋅ 102 + 10 + 3 ≤ c ⋅ 102

⟹ c ≥ 2.13

f(n) ≤ 2.13n2 n ≥ 10

f(n) ≤ cn2 n ≥ n0

is O(n2)

is also O(n3)

if there exist positive constants and such that c n0 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

rather than f(n) ∈ O(g(n))

f(n) = O(g(n)) find and n0 c

 allows some algebra= O(⋅)

Note: we are considering sets of function that are asymptotically nonnegative (nonnegative for sufficiently large values of)n

https://en.wikipedia.org/wiki/Big_O_notation#/media/File:Big-O-notation.png

 if there exist positive constants and such that c n0

0 ≤ cg(n) ≤ f(n)

f(n) = 2n2 + n + 3

f(n) = 2n2 + n + 3

Asymptotic lower and tight bounds

References

Definitions follow P. Black, "Ω", in "Dictionary of Algorithms and Data Structures" and T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022)

Figures based on https://xlinux.nist.gov/dads/HTML/omegaCapital.html, https://xlinux.nist.gov/dads/HTML/theta.html and similar figures in T. Cormen et al., "Introduction to
algorithms", Chap 3.2, MIT press, (2022)

Equivalence of to and : D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", 3rd Ed. (1997) f = Θ(g(n)) f = O(g(n)) f = Θ(g(n))

 f(n) = Ω(g(n))

f(n)

cg(n)

is Ω(n2)

f(n) = Ω(g(n))

f(n)

c1g(n)

f(n) = Θ(g(n))
is also Ω(n)

Asymptotic lower bound

 is of order at least f(n) g(n)for all n ≥ n0

Examples:

 if there exist positive constants , and such that c1 c2 n0

c1g(n) ≤ f(n) ≤ c2g(n)

 f(n) = Θ(g(n))

Asymptotic tight bound

 is of order exactly f(n) g(n)for all n ≥ n0

 f(n) = 2n2 + n + 3 is Θ(n2)

 Informal: grows at least as fast as f(n) g(n)

 Informal: grows exactly as fast as f(n) g(n)

nn0

nn0

Examine highest
order term

 and
f(n) = O(g(n)) f(n) = Ω(g(n))
⟺ f(n) = Θ(g(n))

c2g(n)

https://xlinux.nist.gov/dads/HTML/theta.html

 if for any there exists such that c > 0 n0 > 0

0 ≤ f(n) < cg(n)

 f(n) = 2n2 + n + 3

Asymptotic loose bounds

References

L. McCann, http://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf

T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022)

(Table) http://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf

 f(n) = o(g(n))

is o(n3)

f(n) = ω(g(n))

but it is not o(n2)

Asymptotic loose upper bound

 is of order less than f(n) g(n)for all n ≥ n0

Example:

 if for any there exists such that c > 0 n0 > 0

0 ≤ cg(n) < f(n)

 f(n) = ω(g(n))

Asymptotic loose lower bound

 is of order greater than f(n) g(n)for all n ≥ n0

 f(n) = 2n2 + n + 3 is ω(n)

 Informal: grows slower than f(n) g(n)

 Informal: grows faster than f(n) g(n)
nn0

f(n)

cg(n)
f(n) = o(g(n))

f(n)

cg(n)

nn0

Definition

O(⋅)
o(⋅)

Ω(⋅)
ω(⋅)

c > 0 n0 > 0 f(n) cg(n)? ? ?
∀

∀

<
≤
≥
>

∃
∃

∃
∃
∃
∃

different growth
rates

different growth
rates

but it is not ω(n2)

http://www2.cs.arizona.edu/classes/cs345/summer14/files/bigO.pdf

We can write

Otherwise, since ,

Knuth: RHS of equation does not give more information than LHS

This stems from using

 really means

2n2 + n = O(n2)

n2 = O(n2)

f(n) = O(g(n))

O(f(n)) = O(g(n)) O(f(n)) ⊆ O(g(n))

-notation algebraO

References

(one-way equality) D. E. Knuth, "The art of computer programming, vol. 1: fundamental algorithms", Chap 1.2, 3rd Ed. (1997)

T. Cormen et al., "Introduction to algorithms", Chap 3.2, MIT press, (2022)

With -notation (and other variants) we can perform some algebraO

but not O(n2) = 2n2 + n

 is "one-way" equality=

(with caution)

RHS is a "crudification"

to denote set membership f(n) ∈ O(g(n))

Why caution is needed

f(n) = O(f(n)) c ⋅ f(n) = O(f(n))

f(n) = O(g(n)) ⟺ g(n) = Ω(f(n)) f(n) = o(g(n)) ⟺ g(n) = ω(f(n))

O(f(n)) + O(f(n)) = O(f(n)) Example properties

we'd have n2 = 2n2 + n

useful for derivations

Functions commonly used for algorithm analysis

References/image credit

https://en.wikipedia.org/wiki/Time_complexity

https://upload.wikimedia.org/wikipedia/commons/7/7e/Comparison_computational_complexity.svg

 - constantΘ(1)

 - logarithmicΘ(log(n))

 - square rootΘ(n)

 - linearΘ(n)

 - linearithmicΘ(n log(n))

 - quadraticΘ(n2)

 - exponentialΘ(2n)

 - factorialΘ(n!)

n

 f(n)

1
log(n)

n

n log nn22nn! n

https://en.wikipedia.org/wiki/Time_complexity

Image credit: Stable diffusion (lexica.art)

https://lexica.art/prompt/16135179-6a39-496a-9a7f-c4a06cdd8ff5

See video description below for links to:

Further resources

Slides

References

