° ° ° thi’ the are
Brief guide to Binary Search Trees _H y
ow they are implemented

ey S oo)| o I e e

Fairly fast search, insertion, deletion

maximum, minimum, successor, predecessor

Creators: Dumey (1952) Wheeler (1957) ks
Berners-Lee (1959) g1 Windley (1960)

Complexity (for n data items) Binary Search Tree Property: for each node u, any
Typically, binary search trees are fairly fast: node [in its left subtree satisfies /. key < u.key, any
Avg. case: search, insert, delete — O(log n) node 7 in its right subtree satisfies . key > u . key

Worst case: search, insert, delete — O(n) SR e ——

(History of Binary Search Trees) D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 6.2.2 (1974)
(Wheeler/Berners-Lee) A. Douglas, "Techniques for the recording of, and reference to data in a computer", The Computer Journal (1959)
(D. Wheeler) https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)#/media/File:EDSAC_(14)_(cropped).jpg

h d I —_ O(h) (h BST (C. Berners-Lee) hitps://www.bl.uk/voices-of-science/interviewees/conway-berners-lee

seq rc / I nse rt’ e ete A. Booth and A. Colin, "On the efficiency of a new method of dictionary construction", Information and Control (1960)
(Booth) https://www.computerhope.com/people/andrew_booth.htm
(Andrew Colin) https://www.heraldscotland.com/opinion/16998308.obituary—andrew-colin-professor-computer-science/

SII.O rage OF bina ry sea rCh h'ees: @(n) -(I-Hisqu)dhﬂs?me zomb C':O e0| Prozeuf t:') :fccse rtain It ezsrwt::f)pl ications to searching and sorting", JACM (1962)

(Binary Search Trees) T. Cormen et al., "Introduction to algorithms", Chap 12.1, MIT press, (2022)

https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)#/media/
https://www.bl.uk/voices-of-science/interviewees/conway-berners-lee
https://www.computerhope.com/people/andrew_booth.htm
https://www.heraldscotland.com/opinion/16998308.obituary---andrew-colin-professor-computer-science/
http://math.oxford.emory.edu/site/cs171/hibbardDeletion/

Tree traversals

Traversal algorithms
A traversal algorithm aims to "process" each

node in the tree exactly once

The simplest traversals use depth-first-search

(go deeper first, rather than "breadth first")

Inorder traversal: process each node in-between
visiting and
Recursive implementation:
def inorder(u):
1f u:
inorder (u.left)

print(u.key)
inorder(u.right)

of BST Q
print out: 6 6

Note that keys were

def preorder(u): def postorder(u):

if u 1s not None: if u 1s not None:
orint(u.key) nostorder (u.left)
oreorder (u. left) postorder(u.right)
oreorder(u.right) orint(u.key)

printout: [321546] printout:[124653

Traversals are ®(n) - call themselves twice at

each node (left child and right child)

References/Notes/Image credits:
(Tree traversals) http://webdocs.cs.uvalberta.ca/™ holte /T26 /tree-traversal.html
(Traversal complexity) T. Cormen et al., "Introduction to algorithms", Chap 12.1, MIT press, (2022)

http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html

Binary Search Tree Queries

Minimum/Maximum Inorder Predecessor (3)
def minimum(u) def maximum(u): Element immediately before node in 6/ \e

while u.left: while u.right:
u.left u = u.right the / / \
return u return u .
Note: no key required! 0 e Q

E.g. argument: root E.g. argument: root
. def predecessor(u):
returns node with key 1| [returns node with key 9 if U left: Example Binary Search Tree

SeCII'Ch return maximum(u.left)

else:
def search(u, key): = u.parent Predecessor examples

while u and key != u.key:[|query key: 6 while par and u != : First case

if key < u.key: returns node query node with key 3
= u.left .parent returns node with key 2

else: key: 7 return
. query xey Second case
u = u.right

returns None . . . To with k
return u Note: inorder successor is symmetric query node with key 6
returns node with key 3

Complexity: O(h) where h is tree height || Complexity: O(h) (A is tree height)

References:
(Binary search) https://webdocs.cs.ualberta.ca/ " holte /T26 /binary-search.html (algorithm pseudocode) hitps://en.wikipedia.org/wiki/Binary_search_tree#Searching (Querying a BST) T. Cormen et al., "Introduction to algorithms", Chap 12.2, MIT press, (2022)

https://webdocs.cs.ualberta.ca/~holte/T26/binary-search.html

Binary Search Tree Insertion

Insertion
Insert new node v into binary search tree bst

def insert(bst, v):
u = bst.root
= None
while u:
= U
= u.left 1if v.key < u.key else u.right
V. =
if not . # handle case when bst was empty
bst.root = v

el1t v.key < .key: Insert example |node with key 7

.left = v

Example Binary Search Tree

else:
.right = v

We follow Cormen (BST allows duplicate keys)

Complexity: O(h) where h is tree height

If not allowed, insert() must be modified

References:
(insertion pseudocode) hitps://en.wikipedia.org/wiki/Binary search_tree#Insertion
(Insertion) T. Cormen et al., "Introduction to algorithms", Chap 12.3, MIT press, (2022) (a.k.a CLRS due to the authors names)

https://en.wikipedia.org/wiki/Binary_search_tree#Insertion

Binary Search Tree Deletion

Deletion logic

To delete a node from BST, there are to consider |goal: preserve the BST property

In the following, we will focus on deleting the node with key 2

case 1: case 2: case 3: case 4:
no right child no left child successor is right child successor is not right child

References:
hitps://en.wikipedia.org/wiki/Binary_search_tree#Deletion
(Deletion) T. Cormen et al., "Introduction to algorithms", Chap 12.3, MIT press, (2022)

Binary Search Tree Deletion

Deletion implementation

Delete node . from binary search tree bst

def delete(bst, u):
if not u.right:
shift nodes(bst, u, u.left)
elif not u.left:
shift nodes(bst, u, u.right)
else: # U has two children
u successor = minimum(u.right)
if u _successor != u.right:
shift nodes(bst, u successor, u successor.right)
U successor.right u.right
u successor.right.parent = u successor
shift nodes(bst, u, u successor)
u successor.left = u.left
U successor.left.parent = u successor

Complexity: O(h) where h is tree height

References:
(Deletion pseudocode - we follow this naming convention) https://en.wikipedia.org/wiki/Binary_search_tree#Deletion
(Deletion) T. Cormen et al., "Introduction to algorithms", Chap 12.3, MIT press, (2022)

def shift nodes(bst, old, src):

if not .parent:
bst.root =
elif .parent.left:
.parent.left =
else:
.parent.right =
if

.parent = old.parent

