
Brief Guide to B-trees
What they are

How they are implemented

B-trees
Self-balancing search trees

Fast search, insertion, deletion

Widely used for databases and file systems

Introduced by Bayer & McCreight (1970)

What does B stand for?

"The more you think about what the B could

mean, the more you learn about B-trees" (Bayer)

References/Notes/Image credits:
R. Bayer and E. McCreight, "Organization and maintenance of large ordered indices", ACM SIGFIDET (1970)
(R. Bayer) https://www.computerhope.com/people/rudolf_bayer.htm
(E. McCreight photo and discussion of naming) https://www.mccreight.com/people/ed_mcc/index.htm
(B-tree use in MySQL) https://www.vertabelo.com/blog/all-about-indexes-part-2-mysql-index-structure-and-performance/
(B-tree use in ApFS) https://www.ntfs.com/apfs-structure.htm
(B-tree use in btfs) https://en.wikipedia.org/wiki/Btrfs

B-tree complexity (for data items)n

Worst case: search, insert, delete → O(log n)
Storage of B-trees: Θ(n)

ApFSExample applications: MySQL

B-trees: Balanced search trees where nodes can

have many children (e.g. thousands)

Balanced? Bushy? Boeing?

13

1 2 3 5 6 8 9 11 12

4 7 10

14 15 17 18 20 21

16 19

Higher branching factor ⟹ Reduced tree height

⟹ Fewer disk accesses

btrfs

https://www.computerhope.com/people/rudolf_bayer.htm
https://www.mccreight.com/people/ed_mcc/index.htm
https://www.vertabelo.com/blog/all-about-indexes-part-2-mysql-index-structure-and-performance/
https://en.wikipedia.org/wiki/Btrfs

Precursor: Memory Hierarchy/External Memory

References:
(Memory hierarchy) M. T. Goodrich et al., "Algorithm design and applications", Chap. 20 (2015)
(Introduction of HDD in 1956) https://www.ibm.com/ibm/history/exhibits/storage/storage_350.html

Computer memory is arranged as a hierarchy

CPU

Registers

Cache

Main memory

External memory

Faster Larger

For many problems, we care about two levels:

•The level that can store all items in the problem

•The level above this

B-trees are well-suited to addressing this challenge

Transfer is often the bottleneck

Focus on External memory Main memory↔
Hard Disk Drive (introduced in 1956)

access arms

track

cylinder

5K - 15K RPM

seeking is slow due to
arm moves (high latency)

reading/writing neighbours
in block is (relatively) fast

spindleplatters heads block (contiguous)

SSDs: lower latency than HDDs, but still higher

than main memory (both &)

SSDs also use blocks for data access

SATA SSD NVMe SSD

D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap. 5.4.9 (1998)
T. Cormen et al., "Introduction to algorithms", Chap. 18, MIT press (2022)

B-trees and Counting Disk Accesses
A key idea for B-trees:
Make number of children as large as possible while ensuring each node fits in a single block

Navigating down a shallow-but-wide B-tree then involves very few disk accesses

Example: Suppose we have 200 children (199 keys) at each internal node

A (full) B-tree with depth 3 will contain nodes1 + 200 + 2002 + 2003 = 8040201
If we keep the root node in memory, we can access keys with just three disk accesses!≈ 1.6B

References:
M. T. Goodrich et al., "Algorithm design and applications", Chap. 20 (2015)
T. Cormen et al., "Introduction to algorithms", Chap. 18, MIT press (2022)
Note: A similar cost model for counting disk accesses (based on page accesses) is described in detail by R. Sedgewick et al., "Algorithms", 4th Ed. (2011)

Counting disk accesses
Reading/writing blocks from disk is expensive, so we track both:

To access an object u that is not in memory, we must read the block that contains it

To store changes to u, we need to write its block to disk

CPU time Disk block read/writes

read_block(u)

write_block(u)

The height of an -key B-tree grows n Θ(log n)
Num. nodes in a max height ("skinny") tree

= 1 + 2 + 2t + 2t2 + …

Num. keys n = 1 + (t − 1) ⋅ 2(th − 1
t − 1)

⟹ hmax = ⌊logt(n + 1
2)⌋•All leaves have the same depth

•All nodes (except root) have keys≥ t − 1
•All nodes have keys≤ 2t − 1

B-tree DefinitionB-tree properties (based on CLRS)

Warning: there are many different notation/

definition conventions for B-trees!

Bayer & McCreight Knuth (TAOCP) CLRS

References:
R. Bayer and E. McCreight, "Organization and maintenance of large ordered indices", ACM SIGFIDET (1970)
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap. 6.2.4 (1998)
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.1, MIT press (2022)
(2-3-4 trees) https://en.wikipedia.org/wiki/2-3-4_tree
M. T. Goodrich et al., "Algorithm design and applications", Chap. 20.2 (2015)

A B-tree is a tree with minimum degree, :t
•Node u has attributes:

u.is_leafu.keys (ascending order)

•Internal node u has len(keys) children+1
u.children

•The keys of node u separate its children's keys

u.keys[i] u.children[i+1].keys[j] u.keys[i+1]≤ ≤

list

list of length len(keys) + 1

 valid j∀

Floor for other values⌊ ⋅ ⌋ n
Note: base in the logt
makes B-trees short!

= 1 + 2(th − 1
t − 1)

root

= 2th − 1

When , the B-tree is called a 2-4 tree or 2-3-4 treet = 2

If fixed, use not (base change is constant factor)t Θ(log n) Θ(logt n)

u.children[0].keys[j] u.keys[0]≤ u.keys[-1] u.children[-1].keys[j] ≤

B-tree Search

def search(self, u, key): # u is a node
 # linear scan to find index of key
 i = 0
 while i < len(u.keys) and key > u.keys[i]:
 i += 1
 if i < len(u.keys) and key == u.keys[i]:
 return (u, i)
 if u.is_leaf:
 return None
 read_block(u.children[i])
 return self.search(u.children[i], key)

13

1 2 3 5 6 8 9 11 12

4 7 10

14 15 17 18 20 21

16 19

Example B-tree

Python B-tree search procedure (recursive):

Arguments: (root, 11)

Returns (node, 0)

Could replace linear scan with binary search

(not always useful due to caching effects)
References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.2, MIT press (2022)
(Current Linux B-+-tree - uses linear scans) https://github.com/torvalds/linux/blob/
7f317d34906c1033f0752fc137dda04e43979bb8/include/linux/btree.h

Search complexity
Consider costs with min. degree, and num. keys, t n
We've seen that tree height is for keysO(logt n) n
 Linear scan per node, totalO(t) O(t logt n)
(if binary search used, total)O(log t logt n)
 O(logt n)

CPU

Disk block reads

11

B-tree Insertion
Overview of strategy

Idea: search for leaf node and insert key
What if that node is already full?
Split full node into two nodes at median key:
Keys to left of median key go to the first
Keys to right of median key go to the second
Move median key up into parent
What if the parent is already full...?
Two strategies for B-tree insertion:
1. "Insert-then-fix" (Bayer & McCreight)
Insert at leaf, then reverse up tree and fix
 2. "Fix-then-insert" (CLRS) Split full nodes on
the way down, then insert at leaf References:

R. Bayer and E. McCreight, "Organization and maintenance of large ordered indices", ACM SIGFIDET (1970)
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.2, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

Benefit: "1 pass"

def insert(self, key): # self is a B-tree
 root = self.root
 if root.is_full(self.t): # has 2t - 1 keys
 root = self.split_root()
 self.insert_not_full(root, key)

Note: split_root() is the only way that B-tree
height increases

4 10

5 6

T7T6T5

B-tree Insertion: split_child()
split_child() helper function

def split_child(self, u, i): # self is a B-tree
 t = self.t # t is a property of the B-tree
 full_node = u.children[i]
 new_node = Node()
 new_node.is_leaf = full_node.is_leaf
 new_node.keys = full_node.keys[t:]
 if not full_node.is_leaf:
 new_node.children = full_node.children[t:]
 u.children.insert(i+1, new_node)
 u.keys.insert(i, full_node.keys[t-1]) # median
 full_node.keys = full_node.keys[:t-1]
 full_node.children = full_node.children[:t]
 write_block(full_node)
 write_block(new_node)
 write_block(u)

1 2 3 11 12

Example B-tree (t 3)=
Splits the (full) ith child of u (not full):

ui 1=

full_node new_node
T13T12T11T7T6T5T4T3T2T1

8 9

T10T9T8

7

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.2, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

5 6

T7T6T5

1 2 3 5 6 11 12

4 10

7 8 9

T13T12T11T10T9T8T7T6T5T4T3T2T1

8 9

T10T9T8

7

Before

After

Not optimised for efficiency

B-tree Insertion - split_root()

split_root() helper function

Splits the root node when full:

def split_root(self): # self is a B-tree
 new_root = Node()
 new_root.is_leaf = False
 new_root.children = [self.root]
 self.root = new_root
 self.split_child(new_root, 0)
 return new_root

Example B-tree (t 3)=

new_node7

T3T2T1 T6T5T4

self.root

5 6

5 6 7 8 9

T3T2T1 T6T5T4

Before

After

8 9

Note that the tree height has increased by one

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.2, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

B-tree Insertion - insert_not_full()
insert_not_full() helper function

def insert_not_full(self, u, key): # self is a B-tree
 i = 0
 while i < len(u.keys) and key > u.keys[i]:
 i += 1
 if u.is_leaf:
 u.keys.insert(i, key)
 write_block(u)
 else:
 read_block(u.children[i])
 if u.children[i].is_full(self.t):
 self.split_child(u, i)
 i = i if key <= u.keys[i] else i+1
 self.insert_not_full(u.children[i], key)

Insert key into node that is not full (recursive):

Example B-tree (t 2)=
Before

1 3

2

4

5

Arguments: (root, 10)

10

1 7 8 93

2

4

6

5

7

8

9

6

After

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.2, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

CPUInsert complexity O(t logt n) Disk O(logt n)

Tail recursive only need blocks in memoryO(1)

Idea: search for node and delete key

What if that node becomes too small?

"Fix-then-delete" - only (recursively) call delete

on nodes with keys (safe to delete 1)≥ t
This means we may need to transfer a key

down into a child before calling delete

OK since we ensure current node has keys!t
There are 3 cases to handle - when search:

1. Reaches leaf node

2. Reaches internal node containing target key

3. Reaches internal node without target key

B-tree Deletion
Overview of strategy

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.3, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

1 pass

def delete(self, u, key): # self is a B-tree
 # u has t keys or is the root
 i = 0
 while i < len(u.keys) and key > u.keys[i]:
 i += 1
 # handle cases
 # ...

Note: if root ends up with no keys it is deleted
Its only child then becomes the root
This event decreases the B-tree height by one

B-tree Deletion - Case 1
Deletion search reaches a leaf node

Case 1

...
if u.is_leaf:
 if i < len(u.keys) and key == u.key[i]:
 u.keys.pop(i)
 write_block(u)
 else:
 raise KeyError(f"{key} not found")
 return

Recall that u will still have keys remaining

after deletion (we assume it had keys before)

≥ t − 1
t

we have reached a leaf node

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.3, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

B-tree Deletion - Case 2
Deletion search reaches internal node with key

Case 2

... # u not a leaf
if i < len(u.keys) and key == u.key[i]: # case 2

if len(u.children[i].keys) >= self.t: # case 2a
 pred_key = self.predecessor(key, u.children[i])
 self.delete(u.children[i], pred_key)
 u.keys[i] = pred_key
elif len(u.children[i+1].keys) >= self.t: # case 2b
 succ_key = self.successor(key, u.children[i+1])
 self.delete(u.children[i+1], succ_key)
 u.keys[i] = succ_key
else: # case 2c - children i and i+1 both have t - 1 keys
 self.merge_children(u, i)
 if self.root == u and not u.keys:
 self.root = u.children[0] # decrease tree height
 self.delete(u.children[i], key)

Example B-tree (t 2)=

 3 sub-cases (depending on num. keys
in u.children[i] and u.children[i+1])

Before

5 7

96

8 10 11

Case 2a

5 7

6 8

10 11

Case 2c

1 2

4

5 6

T2T1 T5 T6 T7

3

T3 T4

11 3

2 4

5 6

T3T2T1 T4 T5 T6 T7

3

T3 T4

Delete key 9

Delete key 2

Before

After

After

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.3, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

Note: we omit read_block/write_block calls to reduce code length

 Keep searching and ensure next node

visited has keys≥ t
If not initially, case 3a (sibling has
keys) or case 3b (neither sibling does) applies:

≥ 1 ≥ t

B-tree Deletion - Case 3 (3a)
Search reaches internal node without key

Case 3

...
else: # u not a leaf and key not in u.keys
 if len(u.children[i].keys) >= self.t:
 self.delete(u.children[i], key) # continue recursion
 elif self.has_sibling_with_t_keys(u, i): # case 3a
 j = self.index_of_sibling_with_t_keys(u, i)

 if j == i + 1: # sibling with >= t keys to the right
 u.children[i].keys.append(u.keys[i])
 u.keys[i] = u.children[j].keys.pop(0)
 if not u.children[j].is_leaf:
 first_child = u.children[j].children.pop(0)
 u.children[i].children.append(first_child)

 else: # left sibling has at least t keys
 ... # symmetric to case above
 self.delete(u.children[i], key) # continue recursion

Example B-tree (t 2)=

5

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.3, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

T2T1 T4 T5T3

5

7 9

8 10 11

T8T6 T7

BeforeCase 3a

Delete key 5

6

T3T2T1 T4 T5T3

5 7

96

8 10 11

T8T6 T7

6

j = 1

After

B-tree Deletion - Case 3 (3b)

Search reaches internal node without key

Case 3b

... # u not a leaf and key not in u.keys
else: # case 3a both siblings have t - 1 keys
 if i > 0: # we merge with left sibling
 self.merge_children(u, i - 1)
 i = i - 1 # we now have one less child to the left
 else: # we merge with right sibling
 self.merge_children(u, i)
 if self.root == u and not u.keys:
 self.root = u.children[0] # decrease tree height
 self.delete(u.children[i], key)

Example B-tree (t 2)=

 Neither sibling has keys, so we
perform a merge

≥ t

0 2

4

5 6

T2T1 T5 T6 T7

3

T3 T4

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.3, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)

1

After

Case 3b

Delete key 1

00 3

2 4

5 6

T3T2T1 T4 T5 T6 T7

3

T3 T4

i = 0

Before

1

B-tree Deletion - merge_children()
merge_children() helper function

Merge and children of node u

when both children have keys

ith (i + 1)th

t − 1
The merge is performed around a median

key that is pushed down from u:

def merge_children(self, u, i): # self is a B-tree
 median_key = u.keys.pop(i)
 u.children[i].keys.append(median_key)
 sibling_keys = u.children[i+1].keys
 u.children[i].keys.extend(sibling_keys)
 if not u.children[i].is_leaf:
 sibling_children = u.children[i+1].children
 u.children[i].children.extend(sibling_children)
 u.children.pop(i+1)

Example B-tree (t 2)=
Before

After

2

4

5 6

ui 0=

T2T1 T4 T6 T7

3

T3 T4

11 3

2 4

5 6

T3T2T1 T4 T4 T6 T7

3

T3 T4

B-tree Deletion - Complexity

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap. 18.3, MIT press (2022)
L. Xinyu, "Elementary Algorithms", Chap. 7 (2022)
D. Comer, "The Ubiquitous B-tree", ACM Computing Surveys (1979)
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap. 6.2.4 (1998)

Deletion complexity (one pass)
Successor/predecessor calls followed by function termination (still "one pass")

Tree height is for keys:O(logt n) n
 Linear scan per node, totalO(t) O(t logt n)
 O(logt n)
Note: in practice, most deleted keys are in the leaves (for large values of)t

CPU

Disk block reads/writes

B+-tree

Other B-tree variants we did not discuss:

B*-tree

- all values stored in leaves (not internal nodes) which are linked

- aims to keep non-root nodes "more full" (at least 2/3)

