
Brief Guide to Red-Black Trees What they are

How they are implemented

Red-Black Trees (RBTs)
Self-balancing binary search trees

Assuredly fast search, insertion, deletion
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Complexity (for  data items)n
By balancing, red-black trees guarantee speed

Worst case: search, insert, delete  → O(log n)
Storage of red-black trees: Θ(n)

Adelson-Velsky & Landis (AVL tree) (1962) 
Bayer (Symmetric binary B-trees) (1972)
Guibas & Sedgewick (RB trees) (1978)
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History

Sedgewick (Left-leaning RB trees) (2008)

Linux CFSApplications: Container libraries (C++, Java)

Red-black tree: a Binary Search Tree where each 

node also has a colour (which can be red or black)

Approximately balanced: Tree height is Θ(log n)

If node has no child, points 

to a special nil node

•treated as black 

•simplify logic

•omitted from diagrams
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By                  all root-leaf paths have the same 

number of black nodes

By                  red nodes have black children

 longest path,   shortest path, ⟹ hmax ≤ 2 ⋅ hmin

Note: complete binary tree has  nodesn = 2h+1 − 1

Red-Black Tree Properties

RBTs are Binary Search Trees with:

                Every node is red or black
                The root node is black
                Every leaf node (nil node) is black                                                                                                                        
                If a node is red, both of its children 

are black
              Starting from any node, all simple 

paths down to leaf nodes hold the same 

number of black nodes 

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022)  
(Proof of tree height) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/
cps130/fall02/fall02lectures/lecture18/long_redblack.pdf (2002)

Property 1

Property 2

Five key properties of Red-Black Trees (CLRS)

Property 3

Property 4

Property 5

Tree height ( ) is h Θ(log n)
Property 5

Property 4

 h = 0
n = 1

 h = 1
n = 3

 h = 2
n = 7

  ⟹ 2hmin+1 − 1 ≤ n ≤ 2hmax+1 − 1
⟹ hmin ≤ log(n + 1) − 1 ≤ hmax

⟹ hmin = Θ(log n)
hmin ≤ hmax ≤ 2 ⋅ hmin

≤ 2 ⋅ hmin

 ⟹ hmax = Θ(log n)
Key "balanced tree" result

SearchMin Max Successor Predecessor O(log n)⟹

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
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Rotation Operations

Rotations restructure a tree locally without 

breaking the Binary Search Tree Property

Rotations change links (not colours) at  costO(1)

References:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)
(rotation logic/comments based on CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.2, MIT press (2022) 
Python code snippet reference for rotate_left - https://blog.boot.dev/python/red-black-tree-python/ 

The rotation operation
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Rotate_left implementation in Python

M ≤ N
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rotate_right(bst, v)

def rotate_left(self, u): # self is BST instance
    v = u.right     
    u.right = v.left       
    if v.left != self.nil: 
        v.left.parent = u 
    v.parent = u.parent  
    if u.parent is None:
        self.root = v  
    elif u.parent.left == u:
        u.parent.left = v
    else:
        u.parent.right = v
    v.left, u.parent = u, v

u
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Why Are Rotations Useful?

When too many nodes are on a single path, 

rotation distributes them to neighbour paths

This restores balance in the tree

It preserves the Binary Search Tree Property

References:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

The benefits of rotation
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rotate_right(bst, w) Produces more balanced structure

"Single rotation"

Double rotations
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If we have a chain with both a left child and a 

right child, then a "double rotation" is needed

rotate_left(bst, u) rotate_right(bst, w)Function calls:

M

T1 T2

N

T3

w

T4

O

u M

T1 T2

N

T3

w

T4

O

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf


u

T1

Red-Black Tree Insertion

Initially, RBT insertion is the same as BST insertion

What colour should the inserted node be?

We have two options: red or black
If we colour the inserted node red and its parent 

is red, we violate

If we colour the inserted node black, the extra 

black node will violate

Strategy: fix problem locally with rotations and 

recolouring

"Escalate" further issues up the tree

Tree height is  so fixing is Θ(log n) O(log n)
Reference:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

Insertion overview

Insertion - handling cases

Red-black tree insertion involves patiently 

handling several cases

Precursor: whenever we have a RBT violation, 

the node has black children

True after inserts (nils are black)

Also true further up the tree
Property 4

Property 5

"Management 

strategy"

Total Red-Black Tree insertion O(log n)

u

Case 1    has a black parentu

T3

Simply colour node u red:

     is not the root

Only black children

No extra black nodes

Problem is fixed locally

Property 2

Property 4

Property 5

uu

T2T1 T2
subtree with red 

or black root

subtree with black root
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Red-Black Tree Insertion Cont.

When parent of      is red, the steps depend on 

colour of its parent's sibling (its "uncle")

Parent of u is red

u

Reference:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

Case 2    has red parent, red uncleu

T1

u
M

T2

T3

O

T4

P

T5

N

Uncle

Push black colour of w down to each child
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Parent of u is red

Case 3    has red parent, black uncleu
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M

N

O

Problem is fully fixed (no further escalation)
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Parent of u is red

Case 3    has red parent, black uncleu
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Case 3b    is towards its uncleu

T5T4

After

rotate_right(bst, w) u  black→ w red→

Problem is fully fixed (no further escalation)

rotate_left(bst, v)

Red-Black Tree Insertion Cont.
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Colour node u black

N

O w

u



Red-Black Tree Deletion

We build on top of Binary Search Tree deletion

Red-Black Tree deletion is O(log n)
It is also quite complicated to implement

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022) 

Deletion overview

Shifting subtrees

def shift_nodes(self, old, new):
    if not old.parent:
        self.root = new
    elif old == old.parent.left:
        old.parent.left = new
    else:
        old.parent.right = new
    new.parent = old.parent
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Red-Black Tree Deletion

Reference: 
Code adapted from T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022) 

def delete(self, u):  # self is an instance of a red-black tree 
    v = u  # assign v to the node to be deleted 
    v_orig_colour = v.colour  # track v's original colour 
    if u.left == self.nil:  # u's left child is nil 
        x = u.right 
        shift_nodes(self, u, x)  # shift up x into u's place  
    elif u.right == self.nil:  # u's right child is nil 
        x = u.left 
        shift_nodes(self, u, x)  # shift up x into u's place 
    else:  # u has two children 
        v = minimum(u.right) 
        v_orig_colour = v.colour 
        x = v.right 
        if v != u.right: 
            shift_nodes(self, v, v.right) 
            v.right = u.right 
            v.right.parent = v 
        else: 
            x.parent = v 
        shift_nodes(self, u, v) 
        v.left = u.left 
        v.left.parent = v 
        v.colour = u.colour 
if v_orig_colour == "black": 
    fix_delete_violations(self, x)
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v_orig_colour = "black"

uIf v_orig_color was red: 

•v wasn't the root 

•no red nodes have become 

neighbours 

•num black nodes on paths 

haven't changed
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Property 5



Fixing RBT Violations

Moving node v breaks

(and possibly also                 and                )

Trick: when v is moved we add "additional 

black" onto x (the node that takes its place)

x is now

Until we resolve this, we break

To fix, fix_delelete_violations handles cases

Cases depend on the colour of x's sibling w

Focus on x as left child (right child is symmetric)

Double black and red-and-black nodes

Property 4

Property 5

Property 2

Property 1

"double black" "red-and-black"or

w (x's sibling) is red 

Case 1

def fix_delete_violations(self, x):  # self is RBT instance
    while x != self.root and x.colour == "black":
        x = handle_cases(self, x)
    x.colour = "black"

in while loop, x is double black

N
M P

sibling

T4

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022) 

T1 T2

T3

O

x

double black

w

rotate_left(bst, y)

N

M

P

T4T1 T2 T3 

Ox
w

y

y  red→ w  black→

T5

T5

subtree with black rootsubtree with red or black root



Fixing RBT Violations
w (x's sibling) is black, w's children are black 

Case 2 N
M P

sibling

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022) 

T1 T2

x

double black

w

w  red→ Move x up

T3 T4

red or black

N
M P

T1 T2

x

T3 T4

Case 3
N

M P

sibling

T4

T1 T2

T3

O

x w

w is black with red left and black right child
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 root=

Fixing RBT Violations

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022) 

Case 4
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w is black and w's right child is red

rotate_left(bst, w)

w.right  black→

Q
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Remove double black
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w  w.left's colour→

w.left  black→

Case flow

Case 1 Case 2

Case 3

Case 4

resolves (x red-and-black)

Case 2 Case 2 loops at most  timesO(log n)

Case 3 Case 4

Case 4 resolves (x set to root)

All paths through case handling are O(log n)
fix_delete_violations() is ⟹ O(log n)
 Red-Black Tree deletion is ⟹ O(log n)


