## Brief Guide to Red-Black Trees



Assuredly fast search, insertion, deletion

Adelson-Velsky & Landis (AVL tree) (1962) Bayer (Symmetric binary B-trees) (1972) Guibas & Sedgewick (RB trees) (1978)

Sedgewick (Left-leaning RB trees) (2008)

## Complexity (for *n* data items)

By balancing, red-black trees guarantee speed

Worst case: search, insert, delete  $\rightarrow O(\log n)$ 

**Storage of red-black trees:**  $\Theta(n)$ 

Abstract Data Types Set Map Suits

### What they are

How they are implemented

Applications: Container libraries (C++, Java) Linux CFS

5

If node has no child, points

to a special nil node

- treated as black
- simplify logic
- omitted from diagrams

**Red-black tree**: a **Binary Search Tree** where each

## node also has a colour (which can be red or black)

## Approximately balanced: Tree height is $\Theta(\log n)$

References/Notes/Image credits:

History

https://en.wikipedia.org/wiki/Red%E2%80%93black\_tree

3

nil nil nil nil

- (E. Landis) <u>https://opc.mfo.de/detail?photo\_id=2447</u>
- R. Bayer, "Symmetric binary B-trees: Data structure and maintenance algorithms", Acta informatica (1972)
- (R. Bayer) https://www.computerhope.com/people/rudolf bayer.htm
- L. Guibas and R. Sedgewick, "A dichromatic framework for balanced trees", SFCS (1978)
- (L. Guibas) <u>https://geometry.stanford.edu/member/guibas/</u>
- (R. Sedgewick) https://sedgewick.io/
- (Red-Black Trees) T. Cormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022)
- (Linux CFS) https://en.wikipedia.org/wiki/Completely\_Fair\_Scheduler



<sup>(</sup>AVL Trees) G. M. Adelson-Velsky and E. M. Landis, "An algorithm for the organization of information", Doklady Akademii Nauk (1962) (G. M. Adelson-Velsky) https://www.math.toronto.edu/askold/2014-UMN-4-e-Adelson-.pdf

## **Red-Black Tree Properties**

## Five key properties of Red-Black Trees (CLRS)

**RBTs are Binary Search Trees with:** 



**Property 1** Every node is **red** or **black** 



**Property 3** Every leaf node (nil node) is **black** 

**Property 4** If a node is **red**, both of its children

### are **black**

**Property 5** Starting from any node, all simple

paths down to leaf nodes hold the same

number of **black** nodes

References:

(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022) (Proof of tree height) L. Arge and M. Lagoudakis, CPS 230 lecture notes, <u>https://courses.cs.duke.edu/</u> cps130/fall02/fall02lectures/lecture18/long\_redblack.pdf (2002)



## **Rotation Operations**

### The rotation operation

Rotations restructure a tree locally without

breaking the Binary Search Tree Property

Rotations change links (not colours) at O(1) cost



**References:** 

(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, <u>https://courses.cs.duke.edu/cps130/fall02/fall02lectures/</u> lecture18/long\_redblack.pdf (2002)

(rotation logic/comments based on CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.2, MIT press (2022) Python code snippet reference for rotate\_left - https://blog.boot.dev/python/red-black-tree-python/



# Why Are Rotations Useful?

### The benefits of rotation

When too many nodes are on a single path, rotation distributes them to neighbour paths This restores balance in the tree

It preserves the **Binary Search Tree Property** 



#### **Double rotations**

If we have a chain with both a left child and a

right child, then a "double rotation" is needed



#### **References:**

(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, <u>https://courses.cs.duke.edu/cps130/fall02/fall02lectures/</u> lecture18/long\_redblack.pdf (2002)



## **Red-Black Tree Insertion**

#### Insertion overview





**Reference:** 

lecture18/long\_redblack.pdf (2002)







lecture18/long\_redblack.pdf (2002)

## Red-Black Tree Insertion Cont.

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

## **Red-Black Tree Deletion**

#### **Deletion overview**

We build on top of Binary Search Tree deletion Red-Black Tree deletion is  $O(\log n)$ It is also quite complicated to implement

Reference: T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

#### Shifting subtrees

```
def shift_nodes(self, old, new):
    if not old.parent:
        self.root = new
    elif old == old.parent.left:
        old.parent.left = new
    else:
        old.parent.right = new
    new.parent = old.parent
```

![](_page_7_Figure_6.jpeg)

![](_page_7_Picture_7.jpeg)

## **Red-Black Tree Deletion**

```
def delete(self, u): # self is an instance of a red-black tree
    v = u # assign v to the node to be deleted
    v_orig_colour = v.colour # track v's original colour
    if u.left == self.nil: # u's left child is nil
        x = u.right
        shift_nodes(self, u, x) # shift up x into u's place
    elif u.right == self.nil: # u's right child is nil
        x = u.left
        shift_nodes(self, u, x) # shift up x into u's place
    else: # u has two children
        v = minimum(u.right)
        v_orig_colour = v.colour
        x = v.right
        if v != u.right:
            shift_nodes(self, v, v.right)
            v.right = u.right
            v.right.parent = v
                                   If v orig color was red:
        else:
                                    • v wasn't the root Property 2
            x.parent = v
        shift_nodes(self, u, v)

    no red nodes have become

        v.left = u.left
                                      neighbours
                                                       Property 4
        v.left.parent = v
        v.colour = u.colour

    num black nodes on paths

if v orig colour == "black":
                                      haven't changed Property 5
    fix delete violations(self, x)
```

**Reference:** 

Code adapted from T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

![](_page_8_Figure_5.jpeg)

![](_page_9_Figure_0.jpeg)

**Reference:** 

T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

![](_page_9_Figure_3.jpeg)

## Fixing RBT Violations

## w (x's sibling) is black, w's children are black

![](_page_10_Figure_2.jpeg)

Reference:

T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

### w is black with red left and black right child

![](_page_10_Figure_6.jpeg)

![](_page_11_Figure_0.jpeg)

## Fixing RBT Violations

![](_page_11_Figure_2.jpeg)

**Reference:** 

T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

![](_page_11_Picture_5.jpeg)