Brief Guide to Red-Black Trees

How they are implemented

Red-Black Trees (RBTs) Applications:

Self-balancing binary search trees

Assuredly fast search, insertion, deletion It node has no child, points
to a special nil node

e treated as black

o simplify logic

* omitted from diagrams

Red-black tree: a Binary Search Tree where each

Complexity (for n data items)

By balancing, red-black frees guarantee speed node also has a colour (which can be red or black)

Approximately balanced: Tree height is ©(log n)

Worst case: search, insert, delete — O(log n)

References/Notes/Image credits:
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
(AVL Trees) G. M. Adelson-Velsky and E. M. Landis, "An algorithm for the organization of information", Doklady Akademii Nauk (1962)

Sto rq g e OF re d-b I q C k i're es : @ (n) (G. M. Adelson-Velsky) https://www.math.toronto.edu/askold/2014-UMN-4-e-Adelson-.pdf

(E. Landis) https://opc.mfo.de/detail2photo_id=2447

R. Bayer, "Symmetric binary B-trees: Data structure and maintenance algorithms", Acta informatica (1972)
(R. Bayer) https://www.computerhope.com/people/rudolf bayer.htm

L. Guibas and R. Sedgewick, "A dichromatic framework for balanced trees", SFCS (1978)
o (L. Guibas) https://geometry.stanford.edu/member/guibas/
S U III.S AbSiTCI Ct DC“'CI Types (R. Sedgewick) https://sedgewick.io/
(Red-Black Trees) T. Cormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022)

(Linux CFS) https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.math.toronto.edu/askold/2014-UMN-4-e-Adelson-.pdf
https://opc.mfo.de/detail?photo_id=2447
https://www.computerhope.com/people/rudolf_bayer.htm
https://geometry.stanford.edu/member/guibas/

Red-Black Tree Properties

Tree height (1) is ©(log n)
Five key properties of Red-Black Trees (CLRS) By all root-leat paths have the same

number of black nodes

RBTs are with:

Every node is red or black By red nodes have black children

The root node is black —> longest path, /1, .. < 2 - shortest path,
Every leaf node (nil node) is black Note: complete binary tree has n = 21 — 1 nodes

If a node is red, both of its children ¢ H ./'\‘ - {]: -
are black n=1 1=

+ I hmax_l_l
Property 5| Starting from any node, all simple —> 2 1<n<?2

paths down to leaf nodes hold the same — <logn+1)—1<h,.. <2-

number of black nodes — = O(log n) Key "balanced tree" result

<2 = h_. = O(logn)

References:

(CLRS) T. éormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022)
(Proof of tree height) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/ : M M eqrc Successor Predecessor O(IOg n

cps130/fall02/fall02lectures/lecture 18 /long_redblack.pdf (2002)

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

RO'I'G'I'iOn Ope rq'l'ions Rotate_left implementation in Python

def rotate left(self, u): # self i1s BST i1nstance

vV = u.right

u.right = v.left

if v.left != self.nil:
v.left.parent = u

v.parent = u.parent

if u.parent 1s None:
self.root = v

elif u.parent.left ==
u.parent.left

else:
u.parent.right

v.left, u.parent

The rotation operation

Rotations restructure a tree locally without

breaking the Binary Search Tree Property

Rotations change links (not colours) at O(1) cost

rotate left (bst, u)

rotate rlght(bst, v) resuh

References:

(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02 /fall02lectures/
lecture 18 /long_redblack.pdf (2002)

(rotation logic/comments based on CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.2, MIT press (2022)
Python code snippet reference for rotate_left - https://blog.boot.dev/python/red-black-tree-python/

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Why Are Rotations Usetul?

The benefits of rotation Double rotations

When too many nodes are on a single path, If we have a chain with both a left child and a

distributes them to neighbour paths right child, then a "double rotation" is needed

This restores balance in the tree

It preserves the Binary Search Tree Property

Function calls: Hrotate left (bst, u) Hrotate right (bst, w)
"Single rotation" || ..

(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/

. lecture18/long_redblack.pdf (2002
rotate_right (bst, w) Produces more balanced structure ecture18/long recblack.pdt (2002]

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Insertion - handling cases

Red-Black Tree Insertion

Insertion overview

Red-black tree insertion involves patiently

handling several cases

Precursor: whenever we have a RBT violation,

the node has black children U
True after inserts (nils are black)

Initially, RBT insertion is the same as BST insertion
What colour should the inserted node be?

We have two options: red or black

Also true further up the tree

TRl (U) has a black parent

Simply colour node u red:

(1) is not the root
Only black children

No extra black nodes |Property 5 T o
T2 or black root

Problem is fixed locally L

If we colour the inserted node red and its parent

is red, we violate |Property 4

If we colour the inserted node black, the extra

black node will violate |Property 5

Strategy: fix problem locally with rotations and

recolouring "Management
"Escalate" further issues strategy"

Tree height is ®(log n) so fixing is O(log n) P

i i (Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
Total Red-Black Tree insertion O(logn) | lscturei8/long redblack.pdf (2002)

subtree with black root

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Red-Black Tree Insertion Cont. Parent of u is

Parent of u is

When parent of (L) is red, the steps depend on

colour of its parent's sibling (its "uncle")

o WA (U) has red parent, red uncle

Push black colour of w down to each child

Colour node u red Property 2

w

rotate_right (bst, w) u.parent — black |'w —red

Problem is fully fixed (no further escalation)

Reference:

(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Red-Black Tree Insertion Cont.

Parent of u is

XA (U) has red parent, black uncle
Cone

u has no parent

Core + IO

Colour node u black

Problem is fully fixed (no further escalation)

efore rotate left (bst,

Problem is Fully fixed (no further escalation)

Red-Black Tree Deletion

Shifting subtrees

Deletion overview def shift nodes(self,

. . if not .parent:
We build on top of Binary Search Tree celf root =

. elif == .parent.left:
Red-Black Tree is O(log n) Carent 1th _

else:

It is also quite to implement

.parent.right =
.parent = .parent

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

Red-Black Tree Deletion

def delete(self, u): # self 1s an instance of a red-black tree
assign v to the node to be deleted
v_orig colour = v.colour # track v's original colour
if u.left == self.nil: # u's left child is nil
X = u.right
shift nodes(self, u, x) # shift up x into u's place
elif u.right == self.nil: # u's right child is nil
X = u.left
shift nodes(self, u, x) # shift up x into u's place
else: # u has two children
= minimum(u.right)
v_orig colour = v.colour
= v.right
if = u.right:
shift nodes(self, v,
.right = u.right
.right.parent =
else:

u's left child is nil (right case is symmetric)

X.parent =
shift nodes(self, u, v)

.left = u.left
left.parent = neighbours Property 4
.colour = u.colour
if v_orig colour == "black":
fix_delete violations(self, x) haven't changed| Property 5

Reference:

Code adapted from T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

® no red nodes have become

* num black nodes on paths

Fixing RBT Violations w (x's sbling)
Case 1 m M

Moving node v breaks |Property 5 Touble black
ouble blac
(and possibly also |Property 2| and|Property 4|)

Trick: when v is moved we add "additional

Double black and red-and-black nodes

15

subtree with red or black root

black" onto x (the node that takes its place)

A subtree with black root
x is now |"double black" | or |"red-and-black" rotate left (bst, y)

Until we resolve this, we break |Property 1 y — red | w — black

To fix, fix delelete violations handles cases

def fix delete violations(self, x): # self 1s RBT instance
while x != self.root and x.colour == "black":

x = handle_cases(self, x) |in while loop, x is double black

x.colour = "black"

Cases depend on the colour of x's sibling

Focus on x as left child (right child is symmetric)

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

FiXing RBT ViOICIﬁOI‘IS w is black with red left and black right child

w (x's sibling) is black, w's children are black

B, B
X
() 9

AA A

y W)
w.parent — black x

w is black and w's right child is

i
@G

AL C f{

Fixing RBT Violations
Case flow

resolves (x red-and-black)

M loops at most O(log n) times

w.left — black

o ot
—> resolves (x set to root)

All paths through case handling are O(log n)

Remove double black

¢
m@@
A A A”

—fix delete violations() IS O(log n)

—> Red-Black Tree is O(log n)

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

