
Brief Guide to Red-Black Trees What they are

How they are implemented

Red-Black Trees (RBTs)
Self-balancing binary search trees

Assuredly fast search, insertion, deletion

References/Notes/Image credits:
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
(AVL Trees) G. M. Adelson-Velsky and E. M. Landis, "An algorithm for the organization of information", Doklady Akademii Nauk (1962)
(G. M. Adelson-Velsky) https://www.math.toronto.edu/askold/2014-UMN-4-e-Adelson-.pdf
(E. Landis) https://opc.mfo.de/detail?photo_id=2447
R. Bayer, "Symmetric binary B-trees: Data structure and maintenance algorithms", Acta informatica (1972)
(R. Bayer) https://www.computerhope.com/people/rudolf_bayer.htm
L. Guibas and R. Sedgewick, "A dichromatic framework for balanced trees", SFCS (1978)
(L. Guibas) https://geometry.stanford.edu/member/guibas/
(R. Sedgewick) https://sedgewick.io/
(Red-Black Trees) T. Cormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022)
(Linux CFS) https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Complexity (for data items)n
By balancing, red-black trees guarantee speed

Worst case: search, insert, delete → O(log n)
Storage of red-black trees: Θ(n)

Adelson-Velsky & Landis (AVL tree) (1962)
Bayer (Symmetric binary B-trees) (1972)
Guibas & Sedgewick (RB trees) (1978)

MapAbstract Data Types SetSuits

History

Sedgewick (Left-leaning RB trees) (2008)

Linux CFSApplications: Container libraries (C++, Java)

Red-black tree: a Binary Search Tree where each

node also has a colour (which can be red or black)

Approximately balanced: Tree height is Θ(log n)

If node has no child, points

to a special nil node

•treated as black

•simplify logic

•omitted from diagrams

4

2

1 3

nil

6

5 7

nil nil nil nil nil nil nil

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.math.toronto.edu/askold/2014-UMN-4-e-Adelson-.pdf
https://opc.mfo.de/detail?photo_id=2447
https://www.computerhope.com/people/rudolf_bayer.htm
https://geometry.stanford.edu/member/guibas/

By all root-leaf paths have the same

number of black nodes

By red nodes have black children

 longest path, shortest path, ⟹ hmax ≤ 2 ⋅ hmin

Note: complete binary tree has nodesn = 2h+1 − 1

Red-Black Tree Properties

RBTs are Binary Search Trees with:

 Every node is red or black
 The root node is black
 Every leaf node (nil node) is black
 If a node is red, both of its children

are black
 Starting from any node, all simple

paths down to leaf nodes hold the same

number of black nodes

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.1, MIT press, (2022)
(Proof of tree height) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/
cps130/fall02/fall02lectures/lecture18/long_redblack.pdf (2002)

Property 1

Property 2

Five key properties of Red-Black Trees (CLRS)

Property 3

Property 4

Property 5

Tree height () is h Θ(log n)
Property 5

Property 4

 h = 0
n = 1

 h = 1
n = 3

 h = 2
n = 7

 ⟹ 2hmin+1 − 1 ≤ n ≤ 2hmax+1 − 1
⟹ hmin ≤ log(n + 1) − 1 ≤ hmax

⟹ hmin = Θ(log n)
hmin ≤ hmax ≤ 2 ⋅ hmin

≤ 2 ⋅ hmin

 ⟹ hmax = Θ(log n)
Key "balanced tree" result

SearchMin Max Successor Predecessor O(log n)⟹

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

T2

Rotation Operations

Rotations restructure a tree locally without

breaking the Binary Search Tree Property

Rotations change links (not colours) at costO(1)

References:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)
(rotation logic/comments based on CLRS) T. Cormen et al., "Introduction to algorithms", Chap 13.2, MIT press (2022)
Python code snippet reference for rotate_left - https://blog.boot.dev/python/red-black-tree-python/

The rotation operation

M

T1

N

T3

rotate_left(bst, u)

Rotate_left implementation in Python

M ≤ N

M

T1

T2

N

T3

rotate_right(bst, v)

def rotate_left(self, u): # self is BST instance
 v = u.right
 u.right = v.left
 if v.left != self.nil:
 v.left.parent = u
 v.parent = u.parent
 if u.parent is None:
 self.root = v
 elif u.parent.left == u:
 u.parent.left = v
 else:
 u.parent.right = v
 v.left, u.parent = u, v

u

T1

M

T2

T3

N v

u v

result

result

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Why Are Rotations Useful?

When too many nodes are on a single path,

rotation distributes them to neighbour paths

This restores balance in the tree

It preserves the Binary Search Tree Property

References:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

The benefits of rotation

M

T1 T2

N

T3

w

T4

O

rotate_right(bst, w) Produces more balanced structure

"Single rotation"

Double rotations

u M

T1

T2

N

T3

w

T4

O

If we have a chain with both a left child and a

right child, then a "double rotation" is needed

rotate_left(bst, u) rotate_right(bst, w)Function calls:

M

T1 T2

N

T3

w

T4

O

u M

T1 T2

N

T3

w

T4

O

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

u

T1

Red-Black Tree Insertion

Initially, RBT insertion is the same as BST insertion

What colour should the inserted node be?

We have two options: red or black
If we colour the inserted node red and its parent

is red, we violate

If we colour the inserted node black, the extra

black node will violate

Strategy: fix problem locally with rotations and

recolouring

"Escalate" further issues up the tree

Tree height is so fixing is Θ(log n) O(log n)
Reference:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

Insertion overview

Insertion - handling cases

Red-black tree insertion involves patiently

handling several cases

Precursor: whenever we have a RBT violation,

the node has black children

True after inserts (nils are black)

Also true further up the tree
Property 4

Property 5

"Management

strategy"

Total Red-Black Tree insertion O(log n)

u

Case 1 has a black parentu

T3

Simply colour node u red:

 is not the root

Only black children

No extra black nodes

Problem is fixed locally

Property 2

Property 4

Property 5

uu

T2T1 T2
subtree with red

or black root

subtree with black root

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Red-Black Tree Insertion Cont.

When parent of is red, the steps depend on

colour of its parent's sibling (its "uncle")

Parent of u is red

u

Reference:
(Rotations) L. Arge and M. Lagoudakis, CPS 230 lecture notes, https://courses.cs.duke.edu/cps130/fall02/fall02lectures/
lecture18/long_redblack.pdf (2002)

Case 2 has red parent, red uncleu

T1

u
M

T2

T3

O

T4

P

T5

N

Uncle

Push black colour of w down to each child

Colour node u red

T1

u
M

T2

T3

w
O

T4

P

T5

N

Before After

N P

w
O

u
M

Pushed issue
up the tree

Property 2

Property 4

Property 5

Parent of u is red

Case 3 has red parent, black uncleu

T1

u
M

T2

T3

wO

PN

Uncle

Before

Case 3a is away from its uncleu

T5T4 T1

u
M

T2 T3

wO

N

After

P

T5T4

rotate_right(bst, w) u red→ u.parent black→ w red→

M

N

O

Problem is fully fixed (no further escalation)

w

https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf
https://courses.cs.duke.edu/cps130/fall02/fall02lectures/lecture18/long_redblack.pdf

Parent of u is red

Case 3 has red parent, black uncleu

T1
u N

T2 T3

wO

Pv M

Uncle

Before

Case 3b is towards its uncleu

T5T4

After

rotate_right(bst, w) u black→ w red→

Problem is fully fixed (no further escalation)

rotate_left(bst, v)

Red-Black Tree Insertion Cont.

T1

u N

T2 T3

wO

P

v M

T5T4

u has no parent

Case 4 has no parentu u

a b

u

Property 2 Property 5

Problem is fully fixed (no further escalation)

Colour node u black

N

O w

u

Red-Black Tree Deletion

We build on top of Binary Search Tree deletion

Red-Black Tree deletion is O(log n)
It is also quite complicated to implement

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

Deletion overview

Shifting subtrees

def shift_nodes(self, old, new):
 if not old.parent:
 self.root = new
 elif old == old.parent.left:
 old.parent.left = new
 else:
 old.parent.right = new
 new.parent = old.parent

6

1 7

Red-Black Tree Deletion

Reference:
Code adapted from T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

def delete(self, u): # self is an instance of a red-black tree
 v = u # assign v to the node to be deleted
 v_orig_colour = v.colour # track v's original colour
 if u.left == self.nil: # u's left child is nil
 x = u.right
 shift_nodes(self, u, x) # shift up x into u's place
 elif u.right == self.nil: # u's right child is nil
 x = u.left
 shift_nodes(self, u, x) # shift up x into u's place
 else: # u has two children
 v = minimum(u.right)
 v_orig_colour = v.colour
 x = v.right
 if v != u.right:
 shift_nodes(self, v, v.right)
 v.right = u.right
 v.right.parent = v
 else:
 x.parent = v
 shift_nodes(self, u, v)
 v.left = u.left
 v.left.parent = v
 v.colour = u.colour
if v_orig_colour == "black":
 fix_delete_violations(self, x)

4

2

1 3

nil

u's left child is nil (right case is symmetric)

6

5 7

nil nil nil nil nil nil nil

u

4

2

1 3

nil

6

5 7

nil nil nil nil nil nil nil

u

x
v

v_orig_colour = "black"

4

2

1 3

nil

u has two children

6

5 7

nil nil nil nil nil nil nil

u
4

2

1 3

nil

6

5 7

nil nil nil nil nil nil nil
x

v

v_orig_colour = "black"

uIf v_orig_color was red:

•v wasn't the root

•no red nodes have become

neighbours

•num black nodes on paths

haven't changed

Property 2

Property 4

Property 5

Fixing RBT Violations

Moving node v breaks

(and possibly also and)

Trick: when v is moved we add "additional

black" onto x (the node that takes its place)

x is now

Until we resolve this, we break

To fix, fix_delelete_violations handles cases

Cases depend on the colour of x's sibling w

Focus on x as left child (right child is symmetric)

Double black and red-and-black nodes

Property 4

Property 5

Property 2

Property 1

"double black" "red-and-black"or

w (x's sibling) is red

Case 1

def fix_delete_violations(self, x): # self is RBT instance
 while x != self.root and x.colour == "black":
 x = handle_cases(self, x)
 x.colour = "black"

in while loop, x is double black

N
M P

sibling

T4

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

T1 T2

T3

O

x

double black

w

rotate_left(bst, y)

N

M

P

T4T1 T2 T3

Ox
w

y

y red→ w black→

T5

T5

subtree with black rootsubtree with red or black root

Fixing RBT Violations
w (x's sibling) is black, w's children are black

Case 2 N
M P

sibling

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

T1 T2

x

double black

w

w red→ Move x up

T3 T4

red or black

N
M P

T1 T2

x

T3 T4

Case 3
N

M P

sibling

T4

T1 T2

T3

O

x w

w is black with red left and black right child

T5

N
M

P

T4

T1 T2 T3

O
x w

T5

rotate_right(bst, w)

w red→

w.parent black→

 root=

Fixing RBT Violations

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 13.4, MIT press (2022)

Case 4
N

M P

sibling

T4

T1 T2

T3

O

x w

w is black and w's right child is red

rotate_left(bst, w)

w.right black→

Q

T5 T6

Remove double black

N
M

P

T4T1 T2 T3

O

x

Q

T5 T6

w w.left's colour→

w.left black→

Case flow

Case 1 Case 2

Case 3

Case 4

resolves (x red-and-black)

Case 2 Case 2 loops at most timesO(log n)

Case 3 Case 4

Case 4 resolves (x set to root)

All paths through case handling are O(log n)
fix_delete_violations() is ⟹ O(log n)
 Red-Black Tree deletion is ⟹ O(log n)

