
useful when data distribution is known

How can we sort data efficiently?

Bucket Sort
Runtime complexity

Properties

Average case Θ(n)
def bucket_sort(A):
 ...

Python Implementation

(when we know the
data distribution)

Bucket Sort
Distribution sort algorithm with three stages:

1.
2.
3.
Effective with knowledge of key distribution

Key idea - E. Isaac & R. Singleton (1955)

Assume uniformly distributed keys

Runtime for keys and buckets:n b

Average-case: → Θ(n + n2

b
+ b)

Worst--case: (all keys in same bucket)→ Θ(n2 + b)
Storage: for items, sort requires: Θ(n) Θ(n + b)
Typically, we choose :b ≈ n
Average-case: → Θ(n)

Bucket Sort
Bucket sort complexity

References/Notes/Image credits:
E. J. Isaac and R. C. Singleton, "Sorting by address calculation", Journal of the ACM (1956)
(Earl Isaac image source) https://www.finnotes.org/people/earl-isaac
(R. Singleton image source) Massachusetts Institute of Technology Yearbook, Vol. 65 (1949)
https://en.wikipedia.org/wiki/Bucket_sort

distribute keys to buckets

sort keys within buckets

gather sorted keys (in order)

Scatter

Sort

Gather

0.15 0.40 0.18 0.83 0.13

Bucket Sort Python Implementation

Reference:
https://en.wikipedia.org/wiki/Bucket_sort
T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)

def bucket_sort(A: list): # all keys fall in [0, 1)
 num_buckets = len(A)
 buckets = [[] for _ in range(num_buckets)]
 for key in A: # scatter
 buckets[int(num_buckets * key)].append(key)
 for bucket in buckets:
 insertion_sort(bucket)
 return [x for bucket in buckets for x in bucket] # gather

bucket_sort(A)

A

0.15

0.40

0.18

0.830.13

num_buckets=5

buckets

0.13 0.180.15 0.40 0.83result

The scatter and gather operations involve simple for loops - each are Θ(n)
Rest of cost is from calling insertion_sort on bucketsn
Let denote the number of keys in bucket mi i

Cost of insertion_sort calls: n
n−1

∑
i=0

O(m2
i)

Take expectation w.r.t key distribution %[
n−1

∑
i=0

O(m2
i)]

%[m2
i] = Var[mi] + %2[mi]

Expected cost of insertion_sort calls: n
n−1

∑
i=0

O(2 − 1/n)

Bucket Sort Runtime Complexity

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)
For the general case when , see https://en.wikipedia.org/wiki/Bucket_sortn ≠ b

Runtime for average case when num. keys, equals num. buckets, n b

n−1

∑
i=0

mi = n

 has binomial distribution mi Bin(n, p)
Probability of falling in bucket : i p = 1/n
%[mi] = n ⋅ 1/n = 1 Var[mi] = 1 − 1/n

Var[mi] = %[m2
i] − %2[mi]

= (1 − 1/n) + 1 = 2 − 1/n
= O(n)

=
n−1

∑
i=0

O(%[m2
i])

Average case bucket sort is Θ(n)

Worst case (all in 1 bucket) - degrades to insertion_sort: Θ(n2)

A Variant Of Bucket Sort

References:
E. Corwin et al., "Sorting in linear time - variations on the bucket sort", Journal of Computing Sciences in Colleges (2004)

Switching the execution order

Conventional bucket sort:

Variation of bucket sort:

This can be faster (due to greater cache-friendliness)

Note: whether this helps depends on implementation/hardware details

Scatter Sort Gather

Scatter SortGather

a "surprisingly easy improvement"

