How can we sort data efﬁc:enfly3

useful when data distribution is known

Runtime complexity

def bucket sort(A):
Average case O(n) "
Python Implementation

Bucket Sort

Bucket sort complexity

Assume uniformly distributed keys

Bucket Sort

Runtime for 7 keys and b buckets:

Distribution sort algorithm with three stages: 2

n
— S @)(n + g b)
1. | Scatter | distribute keys to buckets ;

2, sort keys within buckets
3. gather sorted keys (in order)

Effective with knowledge of key distribution

Key idea - & (1955) E.‘;_ Typically, we choose b ~ n:
. — O(n)

Worst-case: — O(n* + b) (all keys in

Storage: ®(n) for items, sort requires: ®(n + D)

References/Notes/Image credits:

E. J. Isaac and R. C. Singleton, "Sorting by address calculation", Journal of the ACM (1956)
(Earl Isaac image source) hitps://www.finnotes.org/people/earl-isaac

(R. Singleton image source) Massachusetts Institute of Technology Yearbook, Vol. 65 (1949)
hitps://en.wikipedia.org/wiki/Bucket_sort

Bucket Sort Python Implementation

o aoelon

num_buckets=5

def bucket sort(A: list): # all keys fall in [0, 1)
num_buckets = len(A)
buckets = [[] for _ 1n range(num buckets)]
for key 1in A: # scatter
ouckets[int(num buckets * key)].append(key)
for bucket in buckets:

insertion sort(bucket)

return [x for bucket in buckets for x in bucket] # gather

hitps://en.wikipedia.org/wiki/Bucket_sort

T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)

Bucket Sort Runtime Complexity

Runtime for average case when num. keys, n equals num. buckets, b

The scatter and gather operations involve simple for loops - each are ®(n)
Rest of cost is from calling insertion sort onn buckets | m; has binomial distribution Bin(n, p)

Probability of falling in bucket i: p = 1/n

=[m;] =n-1/n=1||Varlm]=1—-1/n
=0 _n—1

n—1
Take expectation w.r.t key distribution [E l Z O(miz)] = Z O(E[m?])

Let m; denote the number of keys in bucket i
n—1

Costof n insertion sort calls: Z O(m?)

“[m?] = Var[m] + E*[m;] = (1 — 1/n)+1 =2 — l/n

Expected cost of n insertion sort calls: Z 02 — 1/n) = O(n) | Average case bucket sort is ©(7)
References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022) Worsi' cqase (a" N] buckei-) _ deg rades .I.O Insel'i'IOn_SOl'i'I @(n 2)
For the general case when n # b, see https://en.wikipedia.org/wiki/Bucket_sort

A Variant Of Bucket Sort

Switching the execution order

Conventional bucket sort:

Variation of bucket sort:

This can be faster (due to greater cache-friendliness)

Note: whether this helps depends on implementation/hardware details

References:
E. Corwin et al., "Sorting in linear time - variations on the bucket sort", Journal of Computing Sciences in Colleges (2004)

