
What is the theoretically fastest possible sort speed?

Comparison sorting algorithms sort arrays by

comparing elements (with no extra information)

Examples:

H. Steinhaus considered a sorting puzzle - ranking

all players in tennis tournaments (1939)

L. Ford and S. Johnson introduced merge-insertion

sort with decision tree analysis (1959)

Comparison Sorting Lower Bounds

Runtime complexity results for comparison sorts

Lower bound for worst input: → Ω(n log n)
Lower bound for average input: → Ω(n log n)

 sorts such as heapsort are

asymptotically optimal

⟹O(n log n)

References/Notes/Image credits:
H. Steinhaus, "Mathematical Snapshots" (1939)
(Image of Steinhaus) https://en.wikipedia.org/wiki/Hugo_Steinhaus#/media/File:Hugo_Steinhaus.jpg
(Bumps photo) https://www.flickr.com/photos/stanbury/42283400832/in/photostream/

Insertion sort Heapsort Quicksort

Note: non-comparison sorts (e.g. Radix sort) can do better

L. Ford and S. Johnson, "A tournament problem", The American Mathematical Monthly (1959)
(Image of Ford) https://en.wikipedia.org/wiki/Lester_R._Ford#/media/File:Lester_R._Ford.gif
(Image of Johnson) https://alchetron.com/Selmer-M-Johnson

https://en.wikipedia.org/wiki/Hugo_Steinhaus#/media/File:Hugo_Steinhaus.jpg
https://www.flickr.com/photos/stanbury/42283400832/in/photostream/
https://en.wikipedia.org/wiki/Lester_R._Ford#/media/File:Lester_R._Ford.gif
https://alchetron.com/Selmer-M-Johnson

noyes

A comparison sort ingests an array [a0, …, an−1]
It only gains information by comparing pairs:

"is "?ai < aj

It outputs a permutation that orders the items

For our analysis, assume all elements are distinct

(repeated elements won't affect lower bounds)

Comparison Sorting Algorithms and Decision Trees

References:
A. Blum and M. Blum, "Comparison-based Lower Bounds for Sorting", https://www.cs.cmu.edu/~avrim/
451f11/lectures/lect0913.pdf
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 5.3 (1998)
T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)
J. Erickson, "Lower Bounds", https://jeffe.cs.illinois.edu/teaching/algorithms/notes/12-lowerbounds.pdf (2018)
Note: in a "full" binary tree, every node has either 0 or 2 children.

Decision trees (or "Comparison trees")

Full binary trees where each internal node

f represents a comparison ai < aj

Each leaf is an array permutation

0 : 1

1 : 2

0 : 2

1 : 2

0 : 2⟨0, 1, 2⟩

⟨0, 2, 1⟩ ⟨2, 0, 1⟩ ⟨1, 0, 2⟩ ⟨1, 2, 0⟩

⟨2, 1, 0⟩

i : j

Tree for [a0, a1, a2]

A comparison sort follows a path from root to leaf

yes

yes

yes

yes

no

no

no

no

⟨π(0), … , π(n − 1)⟩

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/12-lowerbounds.pdf

Lower Bound On The Worst Case

References:
A. Blum and M. Blum, "Comparison-based Lower Bounds for Sorting", https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 5.3 (1998)
T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)
J. Erickson, "Lower Bounds", https://jeffe.cs.illinois.edu/teaching/algorithms/notes/12-lowerbounds.pdf (2018)

There are possible permutations (without repetitions) i.e. ways to sort the inputn!
A correct comparison sorting algorithm must be able to produce all of these

 a comparison sort corresponds to a full binary tree with leaves⟹ ≥ n!
Worst case number of comparisons - length of longest simple path from root to leaf

What is the maximum height of a decision tree?

A binary tree with height has at most leaves, so h 2h n! ≤ 2h

Stirling's approximation: n! = (n
e)

n
2πn(1 + Θ(1

n))
h ≥ log(n!) ≥ log(n

e)
n

= n log n − n log e = Ω(n log n) No comparison sort can be faster
than this on its worst case input

≥ (n
e)

n

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/12-lowerbounds.pdf

Lower Bound On The Average Case

References:
A. Blum and M. Blum, "Comparison-based Lower Bounds for Sorting", https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 5.3 (1998)

What is the smallest possible average height of a decision tree?

The average height is smallest when the tree is completely balanced

Completely balanced means no leaf heights differ by more than 1

If the tree is completely balanced, each leaf has depth or ⌈log(n!)⌉ ⌊log(n!)⌋
 smallest possible average height is ⟹ Ω(n log n) No comparison sort can be

faster than this on average

