
What is the theoretically fastest possible sort speed? 

Comparison sorting algorithms sort arrays by 

comparing elements (with no extra information)

Examples: 

H. Steinhaus considered a sorting puzzle - ranking 

all players in tennis tournaments (1939)

L. Ford and S. Johnson introduced merge-insertion 

sort with decision tree analysis (1959) 

Comparison Sorting Lower Bounds

Runtime complexity results for comparison sorts

Lower bound for worst input:  → Ω(n log n)
Lower bound for average input:  → Ω(n log n)

 sorts such as heapsort are 

asymptotically optimal 

⟹O(n log n)

References/Notes/Image credits: 
H. Steinhaus, "Mathematical Snapshots" (1939)
(Image of Steinhaus) https://en.wikipedia.org/wiki/Hugo_Steinhaus#/media/File:Hugo_Steinhaus.jpg
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Note: non-comparison sorts (e.g. Radix sort) can do better 

L. Ford and S. Johnson, "A tournament problem", The American Mathematical Monthly (1959)
(Image of Ford) https://en.wikipedia.org/wiki/Lester_R._Ford#/media/File:Lester_R._Ford.gif
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noyes

A comparison sort ingests an array [a0, …, an−1]
It only gains information by comparing pairs:

"is "?ai < aj

It outputs a permutation that orders the items

For our analysis, assume all elements are distinct

(repeated elements won't affect lower bounds)

Comparison Sorting Algorithms and Decision Trees

References:
A. Blum and M. Blum, "Comparison-based Lower Bounds for Sorting", https://www.cs.cmu.edu/~avrim/
451f11/lectures/lect0913.pdf 
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 5.3 (1998)
T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)
J. Erickson, "Lower Bounds", https://jeffe.cs.illinois.edu/teaching/algorithms/notes/12-lowerbounds.pdf (2018)
Note: in a "full" binary tree, every node has either 0 or 2 children.

Decision trees (or "Comparison trees")

Full binary trees where each internal node                         

f        represents a comparison ai < aj

Each leaf                         is an array permutation
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A comparison sort follows a path from root to leaf
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Lower Bound On The Worst Case

References:
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D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 5.3 (1998)
T. Cormen et al., "Introduction to algorithms", Chap 8, MIT press (2022)
J. Erickson, "Lower Bounds", https://jeffe.cs.illinois.edu/teaching/algorithms/notes/12-lowerbounds.pdf (2018)

There are  possible permutations (without repetitions) i.e. ways to sort the inputn!
A correct comparison sorting algorithm must be able to produce all of these

 a comparison sort corresponds to a full binary tree with  leaves⟹ ≥ n!
Worst case number of comparisons - length of longest simple path from root to leaf

What is the maximum height of a decision tree?

A binary tree with height  has at most  leaves, so h 2h n! ≤ 2h

Stirling's approximation: n! = (n
e )

n
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n ))
h ≥ log(n!) ≥ log( n

e )
n

= n log n − n log e = Ω(n log n) No comparison sort can be faster 
than this on its worst case input
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Lower Bound On The Average Case

References:
A. Blum and M. Blum, "Comparison-based Lower Bounds for Sorting", https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0913.pdf 
D. E. Knuth, "The art of computer programming, vol. 3: sorting and searching", Chap 5.3 (1998)

What is the smallest possible average height of a decision tree?

The average height is smallest when the tree is completely balanced

Completely balanced means no leaf heights differ by more than 1

If the tree is completely balanced, each leaf has depth  or ⌈log(n!)⌉ ⌊log(n!)⌋
 smallest possible average height is ⟹ Ω(n log n) No comparison sort can be 

faster than this on average


