
algorithms to distribute tasks across processors

Task-Parallel Computing

Analysis

def par_fib(n): 
    ...

Code

The machine can be brought into 
play so as to give several results at 
the same time...

Prime Minister of Italy (1867-1869)

Trends

Moore/Dennard Work: T1(n)



Moore's Law

References/Notes/Image credits:
(G. Moore image) https://www.businesswire.com/news/home/20161102005463/en/Gordon-and-Betty-Moore-Foundation-
Announces-Inaugural-Moore-Inventor-Fellows
(Projection figure from 1965) G. E. Moore, "Cramming more components onto integrated circuits" (1965)
(Projection figure from 1975) G. E. Moore, "Progress in digital integrated electronics", Electron devices meeting (1975)

Progress in Digital Integrated Electronics (1975)

"ICs will lead to 
such wonders as 
home computers"

1965 forecast: double every year 
for minimum component cost

1975 forecast: double every two years

Original

Revised

Cramming more components onto integrated circuits (1965)

Forecast: #transistors/chip when cost-per-transistor is lowest

https://www.businesswire.com/news/home/20161102005463/en/Gordon-and-Betty-Moore-Foundation-Announces-Inaugural-Moore-Inventor-Fellows
https://www.businesswire.com/news/home/20161102005463/en/Gordon-and-Betty-Moore-Foundation-Announces-Inaugural-Moore-Inventor-Fellows
https://www.businesswire.com/news/home/20161102005463/en/Gordon-and-Betty-Moore-Foundation-Announces-Inaugural-Moore-Inventor-Fellows


Moore's Law - Historical Data

Image credits/references:
(Moore's law) H. Ritchie and M. Roser, https://ourworldindata.org/technological-change (last-accessed 2023-01)
(Rising costs) https://www.fabricatedknowledge.com/p/the-rising-tide-of-semiconductor

Year when microchip was introduced

Tr
an
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to

r 
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t Since 2010, cost decline 

per transistor is slowing
≈

K. Flamm, "Measuring Moore’s law: evidence from price, cost, and quality indexes", University of Chicago Press (2019)
(Jensen Huang image) https://nvidianews.nvidia.com/bios/jensen-huang
(Pat Gelsinger image) https://www.concordia.net/community/patrick-gelsinger/

"Moore's law is dead" 
Jensen Huang ('17, '22)

"No it isn't" 
Pat Gelsinger ('22)

https://ourworldindata.org/technological-change
https://www.fabricatedknowledge.com/p/the-rising-tide-of-semiconductor
https://nvidianews.nvidia.com/bios/jensen-huang


Dennard Scaling

References/Notes/Image credits:
(image source) https://www.ibm.com/blogs/think/2019/11/ibms-robert-h-dennard-and-the-chip-that-changed-the-world/ 
R. H. Dennard et al., "Design of ion-implanted MOSFET's with very small physical dimensions", IEEE Journal of solid-state circuits (1974)
https://en.wikipedia.org/wiki/Dennard_scaling
S. Borkar et al., "The future of microprocessors", Communications of the ACM (2011)

As transistors shrink, 
power density remains 
constant

With each generation, transistor dimensions shrink by 30%

Dennard's model of MOSFET scaling

Device area shrinks by 50%

Capacitance shrinks by 30%

area = length × width

capacitance ∝ area/distance

Voltage is reduced by 30% electric field ∝ voltage/distance

Inventor of DRAM
Circuit delay reduces by 30%

Frequency increases by 40%

Active power reduces by 50%

due to reduced gate delays

frequency = 1/time period

active power ∝ CV2f

double # transistors same power 40% fasterEach generation:

https://en.wikipedia.org/wiki/Dennard_scaling


The End Of Dennard Scaling

References/Image credits:
(Image credit) https://github.com/karlrupp/microprocessor-trend-data 
Data up to 2010 collected/plotted by M. Horowitz et al., data from 2010-2019 by K, Rupp
M. Bohr, "A 30 year retrospective on Dennard's MOSFET scaling paper", IEEE Solid-State Circuits Society Newsletter (2007)

Year

Microprocessor trends

Transistors (thousands)

Single-thread performance 
(SpecINT )× 103

Frequency (MHz)

Typical power (Watts)

Number of logical cores

Dennard's model ignored "leakage current"

Does this keep the scaling going?

Dennard scaling ends 2005≈

https://github.com/karlrupp/microprocessor-trend-data


Amdahl's Law

Reference:
G. M. Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities", Proceedings of the Spring Joint Computer Conference (1967)
J. Hennessy and D. Patterson, "Computer Architecture: A Quantitative Approach", Chap. 1 (2017)

How far can parallel computation take us?

!

Amdahl's law is an (often loose) upper bound on parallelism

Many programs contain code that cannot be parallelised
Time to execute programSerial code Parallelisable code

T = 8

Time, TProcessors, PNotation

P = 1

T = 6P = 2

P = 4
Tnew = Torig × ((1 − α) + α

P )
T = 5

Let  be the fraction of 

code that can be parallelised

α ∈ [0,1]

P = 4 Tnew = 8 α = 0.5
Tnew = 8 ⋅ (0.5 + 0.125) = 5

Amdahl's law



Gustafson's Law

Reference:
https://en.wikipedia.org/wiki/Gustafson's_law 
J. Gustafson, "Reevaluating Amdahl's law", Comms. of the ACM (1988)
https://en.wikipedia.org/wiki/Parkinson's_law

Often, the parallel part of the program scales with problem size

There is a key idea underpinning the interpretation of Amdahl's law:

Problem size stays fixed even as more processors become available

speedup = 1 + α ⋅ (P − 1)

This is virtually never the case!

In practice, the problem scales with # processors

Given more processing, the 
problem expands to use it

"Work expands so as to fill 
the time available for its 
completion." - Cyril Parkinson

Parkinson's law (1955)

Better: assume runtime (not 
problem size) is constant

Key difference to Amdahl - we assume that we will scale up the parallel part of the problem 

A linear scaling law!

Which "law" is a better fit depends on the domain Booting your Operating System

Train model on 1000s of GPUs Gustafson

Amdahl

Boot stronger machine

 ProcessorsP

https://en.wikipedia.org/wiki/Gustafson's_law


Key idea: each core sends message (over network) 

to access memory belonging to another core

Typical hardware:

"Easy to build, hard to program" 

Key idea: any core can directly access 

any location in a shared address space

Typical hardware:

"Hard to build, easy to program"

Memory Models For Parallel Computing

References:
J. Hennessy and D. Patterson. "Computer Architecture: A Quantitative Approach", Chap. 5 (2017)

Since the end of Dennard scaling ( 2005), multicore computers have become pervasive ≈
Important design choice with multiple cores/multiple multiprocessors: how to organise memory 

compute clustersphones

Shared Memory Distributed Memory

laptops



Shared Memory Variants

References:
J. Hennessy and D. Patterson. "Computer Architecture: A Quantitative Approach", Chap. 5 (2017)

Symmetric Multiprocessing (SMP)

Uniform Memory Access (UMA)

Shared cache

Main memory I/O system

cache cache cache

Key idea: uniform access time to all memory

Distributed Shared Memory (DSM)

Non-Uniform Memory Access (NUMA)

Interconnection network

memory

Key idea: access time depends on location of data

I/O memory I/O memory I/O

memory I/O memory I/O memory I/O

processor processor processor processor

cache

processor processor processor

processor processor processor



Distribute tasks across processors

Different tasks may be run on the same data 

(as well as across different subsets of data)

Distribute data across processors

Processors perform the same task on 

different subsets of data in parallel

Forms Of Parallelism

References:
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Task_parallelism

Data-level parallelism Task-level parallelism

more general but also more complex

We will focus on task-level parallelism with a shared memory model

https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Task_parallelism


Task-Parallel Platforms

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)

Implementing task-level parallelism with threads

Task parallelism can be implemented with 

threads ("virtual processors") that share memory 

However, this has proven difficult to program:

Scheduling/load-balancing is a challenging job

Task-parallel platforms

Add abstraction layer on top of threads

Programmer specifies which tasks can run in 

parallel (but not where they run) 

Platform manages scheduling, balancing etc.



Fork-Join Parallelism

References:
(M. Conway image) http://www.melconway.com/Home/pdf/committees.pdf
M. Conway, "A multiprocessor system design", Fall Joint Computer Conference (1963)
https://en.wikipedia.org/wiki/Fork-join_model
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)
R. Blumofe et al., "Cilk: An efficient multithreaded runtime system", ACM SigPlan (1995)
(OneTBB) https://github.com/oneapi-src/oneTBB

Most task-parallel platforms support fork-join

Spawn: "forks" - executes function while caller continues to run in parallel

Sync: "joins" - waits for spawned threads to finish before proceeding

Key concept: programmer only specifies which tasks can run in parallel, not 

which tasks must run in parallel

Parallel sections can fork recursively until reaching a given task granularity

A

Fork-join parallelism 
(1963)

B C D E

A

B

C

D

E

Serial

Fork-join

Main thread

Main thread

fork fork

join join

Time: 5

Time: 2

Cilk OneTBB OpenMP

http://www.melconway.com/Home/pdf/committees.pdf
https://github.com/oneapi-src/oneTBB


An Example: Fibonacci

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)

def fib(n):
    if n < 2:
        return n
    x = fib(n - 1)
    y = fib(n - 2)
    return x + y

Not very efficient (no memoization)

T(n) = T(n − 1) + T(n − 2) + Θ(1)

 (exponential)T(n) = Θ(( 1 + 5
2 )

n

)
fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

Fibonacci Numbers

Invocation tree

Independent computations



Parallel Code

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)
R. Blumofe et al., "Cilk: An efficient multithreaded runtime system", ACM SigPlan (1995)
(nogil python) https://nogil.dev/

def par_fib(n):
    if n < 2:
        return n
    x = spawn par_fib(n - 1)
    y = par_fib(n - 2)
    sync
    return x + y

Parallel pseudocode (CLRS/cilk)
def par_fib(n):
    if n < 2:
        return n
    with ThreadPoolExecutor() as exec:
        x_future = exec.submit(par_fib, n - 1) # spawn
        y = par_fib(n - 2)
        x = x_future.result() # sync
    return x + y

Parallel version (Python)

Use nogil + coarsening for speedup

spawn says main thread can execute in parallel with the spawned child, not that it must

sync says parent must wait for all spawned children to finish (join)

spawn/sync express the logical parallelism of the tasks

It is the responsibility of the scheduler to assign the tasks to processors

CPython GIL "



par_fib(3)

par_fib(4)

Computation DAG

References:
(CLRS) T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)
https://www.csd.uwo.ca/~mmorenom/cs3101_Winter_2015/Multithreaded_Parallelism_and_Performance_Measures.pdf

par_fib(2)

par_fib(2)

par_fib(1)

par_fib(1)

par_fib(1) par_fib(1)

par_fib(0)

We can view execution as a computation DAG (a.k.a. "parallel trace"): G = (V, E)
Executed instructions: vertices in V Dependencies between instructions: edges in E

To avoid clutter: group chains of instructions with no parallel/procedural control into "strands"

def par_fib(n): 
    if n < 2: 
        return n 
    x = spawn par_fib(n - 1) 
    y = par_fib(n - 2) 
    sync 
    return x + y

Called functionSpawned function

https://www.csd.uwo.ca/~mmorenom/cs3101_Winter_2015/Multithreaded_Parallelism_and_Performance_Measures.pdf


Parallel Computation Analysis: Assumptions

References/image credits:
T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)
(Sequential consistency) L. Lamport, "How to make a multiprocessor computer that correctly executes multiprocess programs", IEEE ToC (1979)
(Image of L. Lamport) https://en.wikipedia.org/wiki/Leslie_Lamport#/media/File:Leslie_Lamport.jpg

Assumptions for analysis 

1. We have an ideal parallel computer:

•multiple processors

•sequentially consistent memory

2. Processors have equal computing power

3. No overhead for scheduling

Sequentially consistent (Lamport, 1979     ):

Instruction execution preserves the partial 

ordering of DAG

Attain via sequential processors; FIFO memory

(processors communicate through memory)



Work/Span Analysis

References:
T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)
https://en.wikipedia.org/wiki/Analysis_of_parallel_algorithms

Let  denote runtime of program on  processorsTP P
Work ( ): time to execute program on 1 processorT1
Span ( ): time to execute program on  processorsT∞ ∞
The span is the sum of the runtimes of strands on the 

"critical path" - the longest path in the computation DAG

par_fib(4)

Work ( ) T1 = 17
Span ( ) T∞ = 8

Work law: TP ≥ T1/P
Span law: TP ≥ T∞
Speedup:  T1/TP

Linear speedup: T1/TP = Θ(P)
Parallelism:  T1/T∞

(  processors can achieve at most  units of work per time step)P P
(with  processors, we can emulate the  processors and leave rest idle)∞ P

(by work law,  - speedup on our ideal parallel machine is at most )T1/TP ≤ P P
Perfect linear speedup: T1/TP = P

Parallelism ( ) T1/T∞ = 17/8

(maximum possible speed up with any number of processors)

= 2.125

super-linear impossible in this model

n = 4



Span  for par_fib(n):T∞(n)
T∞(n) = max(T∞(n − 1), T∞(n − 2)) + Θ(1)

 = T∞(n − 1) + Θ(1)

Parallel Analysis

Reference:
T. Cormen et al., "Introduction to algorithms", Chap 26, MIT press (2022)

c

Serial

X Y
X

Y
Work: T1(X ∪ Y) = T1(X) + T1(Y)
Span: T∞(X ∪ Y) = T∞(X) + T∞(Y)

Parallel

Work: T1(X ∪ Y) = T1(X) + T1(Y)
Span: T∞(X ∪ Y) = max(T∞(X), T∞(Y))

Work  for par_fib(n):T1(n)

 T1(n) = Θ(( 1 + 5
2 )

n

) T∞ = Θ(n)

T1(n)
T∞(n)Parallelism:

Grows fast with n
= Θ(( 1 + 5

2 )
n

/n) Lots of parallelism


