
play a key role in whether P = NP

NP-complete Problems

Definitions StrategyHistory

Hilbert/Cook P, NP, NPC

If we can verify a solution efficiently, 
can we also find a solution efficiently?

Reductions

Does ?P = NP



The Entscheidungsproblem (Decision Problem)

Image credits/References: 
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(Hilbert lecture) http://aleph0.clarku.edu/~djoyce/hilbert/problems.html 
(Diophantus picture) https://en.wikipedia.org/wiki/Diophantus 
(Russell picture) https://en.wikipedia.org/wiki/Bertrand_Russell#/media/File:Bertrand_Russell_1957.jpg 
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(Ackermann) https://en.wikipedia.org/wiki/Wilhelm_Ackermann#/media/File:Ackermann_Wilhelm.jpg

Hilbert lecture (1900) - 23 unsolved mathematics problems 

Problem 10: Determine solvability of a Diophantine equation 

Equations with integer coefficients and integer solutions 

Best known example:  (Fermat's last theorem) 

Shakeups: 

Hilbert sought the rigorous axiomatisation of mathematics 

Entscheidungsproblem: can we find a decision procedure to 

determine the provability of any well-formed formula 

Published in 1928 with Willhelm Ackermann

xn + yn = zn

Quantum mechanics Russell's paradox

https://en.wikipedia.org/wiki/David_Hilbert#/media/File:Hilbert.jpg
https://en.wikipedia.org/wiki/Hermann_Minkowski#/media/File:De_Raum_zeit_Minkowski_Bild_(cropped).jpg
http://aleph0.clarku.edu/~djoyce/hilbert/problems.html
https://en.wikipedia.org/wiki/Diophantus
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Gödel And Herbrand

Image credits/References: 
https://en.wikipedia.org/wiki/Kurt_Gödel#/media/File:Kurt_gödel.jpg 
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Gödel published "On Formally Undecidable Propositions of 

Principia Mathematica Systems I" (1931) 

Introduced Gödel's Incompleteness theorem 

Consistency proof for arithmetic within system is impossible 

Hilbert's response was "somewhat angry" 

A decision process for the truth of a formula was impossible 

A decision process for provability was still possible 

Princeton lectures on general recursive functions (1934) 

Gödel credited the idea to Jacques Herbrand 

With incompleteness theorem, implicitly ruled out a solution

https://en.wikipedia.org/wiki/Jacques_Herbrand#/media/File:J_Herbrand_1931.jpg
http://jeffe.cs.illinois.edu/teaching/algorithms/models/06-turing-machines.pdf


Church And Turing

Image credits/References: 
(Church picture) https://en.wikipedia.org/wiki/Alonzo_Church#/media/File:Alonzo_Church.jpg 
(Turing picture) https://www.biography.com/scientists/alan-turing 
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In 1936, Church & Turing showed no general procedure could be found to 

decide if an arbitrary proposition is provable from axioms of first order logic 

Turing's paper contributed: 

•Turing machines - a simple formal model of mechanical computation  

•Proof that no Turing machine can solve the "halting problem" - decide whether 

a given Turing machine will halt or run indefinitely 

•(Entscheidungsproblem) Proof that no Turing machine can decide provability of 

an arbitrary proposition

Some problems cannot be solved at all!

Our focus: how efficiently can we solve a problem?

def turing_mischief(): 
    if halts(turing_mischief): 
        loop_forever() 

Suppose halts(f) returns True if f halts, False otherwise

Does turing_mischief() halt?

halts() cannot exist!

contradiction!contradiction!

https://www.biography.com/scientists/alan-turing
http://jeffe.cs.illinois.edu/teaching/algorithms/models/06-turing-machines.pdf


Algorithmic Efficiency

Image credits/References: 
A. Cobham, "The intrinsic computational difficulty of functions", (1965) 
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019) 
(Cobham) https://recursed.blogspot.com/2014/11/alan-cobham-appreciation.html 
https://en.wikipedia.org/wiki/NP_(complexity)

Efficient algorithms - solve problem in polynomial time 

Runtime complexity  for some constant  and input size O(nk) k n

Decision problems: problems whose output is a boolean value (yes or no)

Class: P Class: NP Class: co-NP
Decision problems that 
can be solved in 
polynomial time

If answer is yes, proof 
can be checked in 
polynomial time

If answer is no, proof 
can be checked in 
polynomial time

Cobham's thesis

Problems in P also in NP and co-NP

NP = "Nondeterministic Polynomial time" (equivalent definition)

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://recursed.blogspot.com/2014/11/alan-cobham-appreciation.html


P Versus NP

References/Image credits: 
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Does  equal ? (1971) 

The answer is no 

But no proof has been found that  

It is the one of the 7 (1M USD) Millennium Prize problems 

Limited progress in the form of "barrier" results 

It is also unproven whether 

P NP

P ≠ NP

NP ≠ co-NP

Jeff Erickson

"We can prove that we have no 

idea how to prove !"P ≠ NP

NP P co-NP
What every reasonable human 

thinks the world looks like

"It is to our everlasting shame 
that we were unable to 
persuade the math department 
to give him tenure." 

Richard Karp

Denied tenure ('70)

Basel turned down Euler...

("P", "NP" due to Karp (1972))

https://en.wikipedia.org/wiki/Stephen_Cook#/media/File:Stephen_A._Cook_1968_(enlarged_portion).jpg
http://jeffe.cs.illinois.edu/teaching/algorithms/


NP-complete And NP-hard

Why is it useful to know that a problem is NP-complete? 

Give up searching for a fast, exact solution (focus on approximation algorithm)

A problem is NP-hard if a polynomial-time algorithm for this problem implies 

a polynomial-time algorithm for all problems in NP 

NP-hard problems are "at least as hard as every NP problem" 

A problem is NP-complete if it is both in NP-hard and in NP 

NP-complete problems are the "hardest problems in NP"

NP P co-NPNP-hard

NP-complete

What every reasonable human 

thinks the world looks like

References: 
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019) T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

http://jeffe.cs.illinois.edu/teaching/algorithms/


Strategy To Show NP-completeness
Strategy: Optimisation vs decision problems Reductions A first NP-complete problem

The NP-complete definition applies to decision problems 

Many problems that we care about are optimisation problems 

We can often convert an optimisation problem into a decision problem: 

Given an undirected graph , vertices  and , and integer , does there exist a path in  

between  and  consisting of at most  edges? 
If the decision problem variant is difficult, we can often show optimisation problem is difficult

G s t k G
s t k

with "yes" or "no" answers

e.g. "find shortest path"

a decision problem

References: 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)



Polynomial-time Reductions
We'll refer to a specific configuration of a problem as an "instance" of that problem 

Suppose we can transform instance  of problem  into instance  of problem  such that: 

•transformation takes polynomial time 

•answer for  is "yes" if and only if answer for  is "yes" 

This can allow us to decide  in polynomial time if we can decide B in polynomial time

α A β B

α β

A

References: 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Polynomial-time reduction algorithm

Polynomial-time 
reduction algorithm

Polynomial-time 
algorithm to decide B

instance  of α A instance  of β B yes

no no

yes

polynomial-time algorithm to decide A

Suppose we have: 

Then we know that  is NP-complete! B
Polynomial-time reduction algorithm A → BNP-complete problem A

Proof by contradiction (could decide  in polynomial time)A



A First NP-complete Problem
To use reduction to show a problem is NP-complete: 

We need a "first" problem that we know is NP-complete 

In 1971, Cook proved that the circuit-satisfiability problem is NP-complete 

The same result was obtained independently by Leonid Levin (as a PhD student) 

This result is known as the Cook-Levin theorem 

Circuit-satisfiability problem: 

Input: a boolean circuit of AND, OR and NOT gates 

Question: does there exist a set of boolean inputs that causes the output to be 1?

References/image credits: 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022) 
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019) 
https://en.wikipedia.org/wiki/Cook–Levin_theorem 
(Levin image) https://www.cs.bu.edu/~lnd/

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://www.cs.bu.edu/~lnd/


Problems Solvable In Polynomial Time

References: 
A. Cobham, "The intrinsic computational difficulty of functions", (1965)  
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Earlier, we described polynomial-time algorithms as "efficient" (Cobham's thesis) 

Reasons that problems with polynomial-time solutions are considered tractable: 

•Few problems with polynomial-time algorithms have very high order (e.g. ) 

•Once a first polynomial-time algorithm is found, more efficient variants are often found later 

•Polynomial-time solvable problems in one computation model are often polynomial-time in others: 

•same problems are solvable in polynomial-time on Turing machines and serial RAM machines 

•The class of polynomial-time solvable problems has several useful closure properties: 

•polynomials are closed under addition, multiplication and composition 

•can feed one polynomial-time algorithm into another to get algorithm that's still polynomial-time

Θ(n1000) rare in practice



Formal Definitions: Problems And Encodings

References: 
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017) 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Abstract decision problem: a mapping 

Example: suppose  is an instance of the abstract decision problem  

Then: 

To solve an abstract decision problem instance, we need a way to communicate it to the computer 

Encoding: a mapping 

Example: we can encode natural numbers  as strings    

The size of problem instance  is the length of its encoded string, denoted  

A problem whose instance set is the set of binary strings is a concrete problem

i = (G, s, t, k) PATH

ℕ = {0, 1, 2, 3, …} {0, 1, 10, 11,…}
i | i |

problem instances, I → {0,1}

 if  a path in  from  to  with  edgesPATH(i) = 1 ∃ G s t ≤ k  otherwisePATH(i) = 0

abstract objects → binary strings

graph nodes number of edges

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf


A Definition For Complexity Class P

References: 
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017) 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

An algorithm solves a concrete problem in  time if:  

Given problem instance  of size , the algorithm produces a solution in  time 

A concrete problem is polynomial-time solvable if there exists an algorithm to solve it in  time 

for some constant  

T(n)
i n = | i | T(n)

O(nk)
k

Complexity class P = {concrete decision problems that are polynomial-time solvable}

A subtle point: the choice of encoding affects the size of the problem instance 

We can typically convert between "sensible" encodings in polynomial time (rules out unary encoding) 

Consequently, encoding choice tends not to affect whether a problem is in  

 denotes "standard" encoding of 

P
⟨o⟩ o (e.g. code for integer polynomially related to binary repr. etc.)

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf


Formal-Language Theory Definitions

References: 
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017) 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

An alphabet  is a finite set of symbols 

A language  over  is any set of strings formed of symbols from  

Example: ,  is the language of prime numbers in binary  

Example: ,  
Set-theoretic operations on languages (e.g. union and intersection) follow directly from definitions 

The set of problem instances for decision problem  is the language  where  

 is fully characterised by the set of problem instances that produce a "yes" answer 

We can interpret  as a language  over  where 

Σ
L Σ Σ

Σ = {0, 1} L = {10, 11, 101, 111, …}

Σ = {0, 1} Σ* = {ε, 0, 1, 00, 01, 10, 11, …}

Q Σ* Σ = {0,1}
Q

Q L Σ = {0,1} L = {x ∈ Σ* : Q(x) = 1}

: empty stringε : language of all strings over Σ* Σ

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf


Formal-Language Notation

References: 
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The decision problem  has language: 

 

Formal languages succinctly express link between decision problems and algorithms that solve them 

Algorithm  accepts a string  if, given  as input, the output is  

Algorithm  rejects a string  if, given  as input, the output is  

The language accepted by  is the set of accepted strings:  

Note: even if  accepts , we can't be sure that  rejects every  (it may loop forever) 

 is decided by  if every binary string in  is accepted and every binary string not in  is rejected

PATH
PATH = {⟨G, s, t, k⟩ : G undirected graph, nodes s, t, k ∈ ℕ, ∃path s ↝ t with at most k edges}

A x ∈ {0,1}* x A(x) = 1
A x ∈ {0,1}* x A(x) = 0

A L = {x ∈ {0,1}* : A(x) = 1}
A L A x ∉ L

L A L L

encoded as binary strings

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf


Alternative Definition Of P

References: 
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017) 
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 is accepted in polynomial time by  if  is accepted by  and there exists a constant  s.t. for any 

string  with ,   accepts  in  time 

 is decided in polynomial time by  if there exists a constant  s.t. for any string  with 

,   decides  in  time 
Key difference: 

•To accept a language , algorithm  only needs to provide an answer for strings in  

•To decide a language , algorithm  must accept/reject every string in   

For Turing's Halting Problem, an accepting algorithm exists, but no decision algorithm exists 

Complexity class: a set of languages whose membership is determined by a complexity measure 

(e.g. runtime) of an algorithm that decides the language

L A L A k
x ∈ L |x | = n A x O(nk)

L A k x ∈ {0,1}*
|x | = n A x O(nk)

L A L
L A {0,1}*

Complexity class  P = {L ⊆ {0,1}* : there exists an algorithm that decides L in polynomial time}

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf


Hamiltonian And Eulerian Cycles
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A hamiltonian cycle of undirected graph  is a simple cycle containing every vertex  

An eulerian cycle of undirected graph  is a cycle containing every edge  once 

The decision problems of determining whether  contains such cycles are defined by languages: 

 

 eulerian cycle  

Euler's theorem: An undirected graph has an eulerian cycle  every vertex has even degree 

So  

No known polynomial-time algorithm decides  (so )

G = (V, E) v ∈ V
G = (V, E) e ∈ E

G

HAM_CYCLE = {⟨G⟩ : G contains a hamiltonian cycle}

EULER_CYCLE = {⟨G⟩ : G contains an }

⟺
EULER_CYCLE ∈ P

HAM_CYCLE HAM_CYCLE ∉ P

Hamilton's game Euler's bridge problem

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf
https://en.wikipedia.org/wiki/Icosian_game#/media/File:Hamiltonian_path_3d.svg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


Polynomial-time Verification And NP
If someone provided us with a hamiltonian cycle, we could verify it in polynomial time: 

Check the cycle is a valid permutation of the vertices in  and that each proposed edge exists in  

A verification algorithm  takes two arguments: input binary string  and certificate binary string  

Algorithm A verifies string  if there exists certificate  such that  

The language verified by  is   

Complexity class  is the class of languages that can be verified by a polynomial-time algorithm 

  polynomial-time  and constant  such that  

                         certificate  with  s.t.  

  polynomial-time  and constant  such that  

                         certificate  with  s.t.  

Little has been proven about the relationships between ,  and  

V E
A x y

x y A(x, y) = 1
A L = {x ∈ {0,1}* : ∃y ∈ {0,1}* : A(x, y) = 1}

NP
L ∈ NP ⟺ ∃ A c

L = {x ∈ {0,1}* : ∃ y |y | = O( |x |c ) A(x, y) = 1}
L ∈ co-NP ⟺ ∃ A c

L = {x ∈ {0,1}* : ∃ y |y | = O( |x |c ) A(x, y) = 0}
P NP co-NP

References: 
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Lemma: If  are languages such that  then    

Proof: Construct a polynomial-time algorithm  to compute  for any input   

Let  be a polynomial-time algorithm that decides 

L1, L2 ⊆ {0,1}* L1 ≤P L2 L2 ∈ P ⟹ L1 ∈ P
F f(x) x

A2 L2

Reducibility
One strategy to solve a problem is to reduce (or recast) it to another problem that we can solve 

In the formal-language decision problem framework: 

 is polynomial-time reducible to , denoted , if there exists a polynomial-time computable 

function  such that ,  

L1 L2 L1 ≤P L2
f : {0,1}* → {0,1}* ∀x ∈ {0,1}* x ∈ L1 ⟺ f(x) ∈ L2

References: 
D. Wilmer, Graduate Algorithms, Lec. 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017) 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

L1
{0,1}* L2 {0,1}*f

 reduces  to f L1 L2

 decides  in polynomial timeA2 ∘ F L1

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf


-completenessNP
A language  is  if  for every  

A language  is  if: 

1. , and 

2.  for every  

 is the complexity class of -complete languages 

Why is -completeness so critical to the study of whether   ? 

Theorem: If any  problem is polynomial-time solvable, then    

Proof: Suppose  in addition to . 

By definition, we know that  for any , so  

This is why -complete problems receive a lot of attention

L ⊆ {0,1}* NP-hard L′ ≤P L L′ ∈ NP
L ⊆ {0,1}* NP-complete

L ∈ NP
L′ ≤P L L′ ∈ NP

NPC NP
NP P = NP

NP-complete P = NP
L ∈ P L ∈ NPC

L′ ≤P L L′ ∈ NP L′ ∈ P
NP

References: 
D. Wilmer, Graduate Algorithms, Lec. 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017) 
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

   ⟹P = NP

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

