
play a key role in whether P = NP

NP-complete Problems

Definitions StrategyHistory

Hilbert/Cook P, NP, NPC

If we can verify a solution efficiently,
can we also find a solution efficiently?

Reductions

Does ?P = NP

The Entscheidungsproblem (Decision Problem)

Image credits/References:
(Hilbert picture) https://en.wikipedia.org/wiki/David_Hilbert#/media/File:Hilbert.jpg
(Minkowski picture) https://en.wikipedia.org/wiki/Hermann_Minkowski#/media/File:De_Raum_zeit_Minkowski_Bild_(cropped).jpg
(Hilbert lecture) http://aleph0.clarku.edu/~djoyce/hilbert/problems.html
(Diophantus picture) https://en.wikipedia.org/wiki/Diophantus
(Russell picture) https://en.wikipedia.org/wiki/Bertrand_Russell#/media/File:Bertrand_Russell_1957.jpg
C. Petzold, "The annotated Turing: a guided tour through Alan Turing's historic paper on computability and the Turing machine" (2008)
(Ackermann) https://en.wikipedia.org/wiki/Wilhelm_Ackermann#/media/File:Ackermann_Wilhelm.jpg

Hilbert lecture (1900) - 23 unsolved mathematics problems

Problem 10: Determine solvability of a Diophantine equation

Equations with integer coefficients and integer solutions

Best known example: (Fermat's last theorem)

Shakeups:

Hilbert sought the rigorous axiomatisation of mathematics

Entscheidungsproblem: can we find a decision procedure to

determine the provability of any well-formed formula

Published in 1928 with Willhelm Ackermann

xn + yn = zn

Quantum mechanics Russell's paradox

https://en.wikipedia.org/wiki/David_Hilbert#/media/File:Hilbert.jpg
https://en.wikipedia.org/wiki/Hermann_Minkowski#/media/File:De_Raum_zeit_Minkowski_Bild_(cropped).jpg
http://aleph0.clarku.edu/~djoyce/hilbert/problems.html
https://en.wikipedia.org/wiki/Diophantus
https://en.wikipedia.org/wiki/Wilhelm_Ackermann#/media/File:Ackermann_Wilhelm.jpg

Gödel And Herbrand

Image credits/References:
https://en.wikipedia.org/wiki/Kurt_Gödel#/media/File:Kurt_gödel.jpg
(Herbrand image) https://en.wikipedia.org/wiki/Jacques_Herbrand#/media/File:J_Herbrand_1931.jpg
(Background story) J. Erickson, http://jeffe.cs.illinois.edu/teaching/algorithms/models/06-turing-machines.pdf (2016)

Gödel published "On Formally Undecidable Propositions of

Principia Mathematica Systems I" (1931)

Introduced Gödel's Incompleteness theorem

Consistency proof for arithmetic within system is impossible

Hilbert's response was "somewhat angry"

A decision process for the truth of a formula was impossible

A decision process for provability was still possible

Princeton lectures on general recursive functions (1934)

Gödel credited the idea to Jacques Herbrand

With incompleteness theorem, implicitly ruled out a solution

https://en.wikipedia.org/wiki/Jacques_Herbrand#/media/File:J_Herbrand_1931.jpg
http://jeffe.cs.illinois.edu/teaching/algorithms/models/06-turing-machines.pdf

Church And Turing

Image credits/References:
(Church picture) https://en.wikipedia.org/wiki/Alonzo_Church#/media/File:Alonzo_Church.jpg
(Turing picture) https://www.biography.com/scientists/alan-turing
A. Turing, "On computable numbers, with an application to the Entscheidungsproblem", J. of Mathematics (1936)
J. Erickson, http://jeffe.cs.illinois.edu/teaching/algorithms/models/06-turing-machines.pdf (2016)
C. Strachey, "An impossible program", The Computer Journal (1965)

In 1936, Church & Turing showed no general procedure could be found to

decide if an arbitrary proposition is provable from axioms of first order logic

Turing's paper contributed:

•Turing machines - a simple formal model of mechanical computation

•Proof that no Turing machine can solve the "halting problem" - decide whether

a given Turing machine will halt or run indefinitely

•(Entscheidungsproblem) Proof that no Turing machine can decide provability of

an arbitrary proposition

Some problems cannot be solved at all!

Our focus: how efficiently can we solve a problem?

def turing_mischief():
 if halts(turing_mischief):
 loop_forever()

Suppose halts(f) returns True if f halts, False otherwise

Does turing_mischief() halt?

halts() cannot exist!

contradiction!contradiction!

https://www.biography.com/scientists/alan-turing
http://jeffe.cs.illinois.edu/teaching/algorithms/models/06-turing-machines.pdf

Algorithmic Efficiency

Image credits/References:
A. Cobham, "The intrinsic computational difficulty of functions", (1965)
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019)
(Cobham) https://recursed.blogspot.com/2014/11/alan-cobham-appreciation.html
https://en.wikipedia.org/wiki/NP_(complexity)

Efficient algorithms - solve problem in polynomial time

Runtime complexity for some constant and input size O(nk) k n

Decision problems: problems whose output is a boolean value (yes or no)

Class: P Class: NP Class: co-NP
Decision problems that
can be solved in
polynomial time

If answer is yes, proof
can be checked in
polynomial time

If answer is no, proof
can be checked in
polynomial time

Cobham's thesis

Problems in P also in NP and co-NP

NP = "Nondeterministic Polynomial time" (equivalent definition)

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://recursed.blogspot.com/2014/11/alan-cobham-appreciation.html

P Versus NP

References/Image credits:
(Cook image) https://en.wikipedia.org/wiki/Stephen_Cook#/media/File:Stephen_A._Cook_1968_(enlarged_portion).jpg
S. Cook, "The complexity of theorem-proving procedures", ACM symposium on Theory of Computing (1971)
R. Karp, "Reducibility among combinatorial problems", Complexity of Computer Computations (1972)
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019)
(sketch of Jeff Erickson by Damien Erickson) https://jeffe.cs.illinois.edu/
(R. Karp comment) https://www2.eecs.berkeley.edu/bears/CS_Anniversary/karp-talk.html

Does equal ? (1971)

The answer is no

But no proof has been found that

It is the one of the 7 (1M USD) Millennium Prize problems

Limited progress in the form of "barrier" results

It is also unproven whether

P NP

P ≠ NP

NP ≠ co-NP

Jeff Erickson

"We can prove that we have no

idea how to prove !"P ≠ NP

NP P co-NP
What every reasonable human

thinks the world looks like

"It is to our everlasting shame
that we were unable to
persuade the math department
to give him tenure."

Richard Karp

Denied tenure ('70)

Basel turned down Euler...

("P", "NP" due to Karp (1972))

https://en.wikipedia.org/wiki/Stephen_Cook#/media/File:Stephen_A._Cook_1968_(enlarged_portion).jpg
http://jeffe.cs.illinois.edu/teaching/algorithms/

NP-complete And NP-hard

Why is it useful to know that a problem is NP-complete?

Give up searching for a fast, exact solution (focus on approximation algorithm)

A problem is NP-hard if a polynomial-time algorithm for this problem implies

a polynomial-time algorithm for all problems in NP

NP-hard problems are "at least as hard as every NP problem"

A problem is NP-complete if it is both in NP-hard and in NP

NP-complete problems are the "hardest problems in NP"

NP P co-NPNP-hard

NP-complete

What every reasonable human

thinks the world looks like

References:
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019) T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

http://jeffe.cs.illinois.edu/teaching/algorithms/

Strategy To Show NP-completeness
Strategy: Optimisation vs decision problems Reductions A first NP-complete problem

The NP-complete definition applies to decision problems

Many problems that we care about are optimisation problems

We can often convert an optimisation problem into a decision problem:

Given an undirected graph , vertices and , and integer , does there exist a path in

between and consisting of at most edges?
If the decision problem variant is difficult, we can often show optimisation problem is difficult

G s t k G
s t k

with "yes" or "no" answers

e.g. "find shortest path"

a decision problem

References:
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Polynomial-time Reductions
We'll refer to a specific configuration of a problem as an "instance" of that problem

Suppose we can transform instance of problem into instance of problem such that:

•transformation takes polynomial time

•answer for is "yes" if and only if answer for is "yes"

This can allow us to decide in polynomial time if we can decide B in polynomial time

α A β B

α β

A

References:
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Polynomial-time reduction algorithm

Polynomial-time
reduction algorithm

Polynomial-time
algorithm to decide B

instance of α A instance of β B yes

no no

yes

polynomial-time algorithm to decide A

Suppose we have:

Then we know that is NP-complete! B
Polynomial-time reduction algorithm A → BNP-complete problem A

Proof by contradiction (could decide in polynomial time)A

A First NP-complete Problem
To use reduction to show a problem is NP-complete:

We need a "first" problem that we know is NP-complete

In 1971, Cook proved that the circuit-satisfiability problem is NP-complete

The same result was obtained independently by Leonid Levin (as a PhD student)

This result is known as the Cook-Levin theorem

Circuit-satisfiability problem:

Input: a boolean circuit of AND, OR and NOT gates

Question: does there exist a set of boolean inputs that causes the output to be 1?

References/image credits:
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)
J. Erickson, Algorithms, http://jeffe.cs.illinois.edu/teaching/algorithms/ (2019)
https://en.wikipedia.org/wiki/Cook–Levin_theorem
(Levin image) https://www.cs.bu.edu/~lnd/

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://www.cs.bu.edu/~lnd/

Problems Solvable In Polynomial Time

References:
A. Cobham, "The intrinsic computational difficulty of functions", (1965)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Earlier, we described polynomial-time algorithms as "efficient" (Cobham's thesis)

Reasons that problems with polynomial-time solutions are considered tractable:

•Few problems with polynomial-time algorithms have very high order (e.g.)

•Once a first polynomial-time algorithm is found, more efficient variants are often found later

•Polynomial-time solvable problems in one computation model are often polynomial-time in others:

•same problems are solvable in polynomial-time on Turing machines and serial RAM machines

•The class of polynomial-time solvable problems has several useful closure properties:

•polynomials are closed under addition, multiplication and composition

•can feed one polynomial-time algorithm into another to get algorithm that's still polynomial-time

Θ(n1000) rare in practice

Formal Definitions: Problems And Encodings

References:
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

Abstract decision problem: a mapping

Example: suppose is an instance of the abstract decision problem

Then:

To solve an abstract decision problem instance, we need a way to communicate it to the computer

Encoding: a mapping

Example: we can encode natural numbers as strings

The size of problem instance is the length of its encoded string, denoted

A problem whose instance set is the set of binary strings is a concrete problem

i = (G, s, t, k) PATH

ℕ = {0, 1, 2, 3, …} {0, 1, 10, 11,…}
i | i |

problem instances, I → {0,1}

 if a path in from to with edgesPATH(i) = 1 ∃ G s t ≤ k otherwisePATH(i) = 0

abstract objects → binary strings

graph nodes number of edges

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

A Definition For Complexity Class P

References:
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

An algorithm solves a concrete problem in time if:

Given problem instance of size , the algorithm produces a solution in time

A concrete problem is polynomial-time solvable if there exists an algorithm to solve it in time

for some constant

T(n)
i n = | i | T(n)

O(nk)
k

Complexity class P = {concrete decision problems that are polynomial-time solvable}

A subtle point: the choice of encoding affects the size of the problem instance

We can typically convert between "sensible" encodings in polynomial time (rules out unary encoding)

Consequently, encoding choice tends not to affect whether a problem is in

 denotes "standard" encoding of

P
⟨o⟩ o (e.g. code for integer polynomially related to binary repr. etc.)

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

Formal-Language Theory Definitions

References:
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

An alphabet is a finite set of symbols

A language over is any set of strings formed of symbols from

Example: , is the language of prime numbers in binary

Example: ,
Set-theoretic operations on languages (e.g. union and intersection) follow directly from definitions

The set of problem instances for decision problem is the language where

 is fully characterised by the set of problem instances that produce a "yes" answer

We can interpret as a language over where

Σ
L Σ Σ

Σ = {0, 1} L = {10, 11, 101, 111, …}

Σ = {0, 1} Σ* = {ε, 0, 1, 00, 01, 10, 11, …}

Q Σ* Σ = {0,1}
Q

Q L Σ = {0,1} L = {x ∈ Σ* : Q(x) = 1}

: empty stringε : language of all strings over Σ* Σ

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

Formal-Language Notation

References:
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

The decision problem has language:

Formal languages succinctly express link between decision problems and algorithms that solve them

Algorithm accepts a string if, given as input, the output is

Algorithm rejects a string if, given as input, the output is

The language accepted by is the set of accepted strings:

Note: even if accepts , we can't be sure that rejects every (it may loop forever)

 is decided by if every binary string in is accepted and every binary string not in is rejected

PATH
PATH = {⟨G, s, t, k⟩ : G undirected graph, nodes s, t, k ∈ ℕ, ∃path s ↝ t with at most k edges}

A x ∈ {0,1}* x A(x) = 1
A x ∈ {0,1}* x A(x) = 0

A L = {x ∈ {0,1}* : A(x) = 1}
A L A x ∉ L

L A L L

encoded as binary strings

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

Alternative Definition Of P

References:
D. Wilmer, Graduate Algorithms, Lecture 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

 is accepted in polynomial time by if is accepted by and there exists a constant s.t. for any

string with , accepts in time

 is decided in polynomial time by if there exists a constant s.t. for any string with

, decides in time
Key difference:

•To accept a language , algorithm only needs to provide an answer for strings in

•To decide a language , algorithm must accept/reject every string in

For Turing's Halting Problem, an accepting algorithm exists, but no decision algorithm exists

Complexity class: a set of languages whose membership is determined by a complexity measure

(e.g. runtime) of an algorithm that decides the language

L A L A k
x ∈ L |x | = n A x O(nk)

L A k x ∈ {0,1}*
|x | = n A x O(nk)

L A L
L A {0,1}*

Complexity class P = {L ⊆ {0,1}* : there exists an algorithm that decides L in polynomial time}

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

Hamiltonian And Eulerian Cycles

References:
D. Wilmer, Graduate Algorithms, Lec. 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)
(Hamilton's game) https://en.wikipedia.org/wiki/Icosian_game#/media/File:Hamiltonian_path_3d.svg
(Euler's bridge puzzle) https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

A hamiltonian cycle of undirected graph is a simple cycle containing every vertex

An eulerian cycle of undirected graph is a cycle containing every edge once

The decision problems of determining whether contains such cycles are defined by languages:

 eulerian cycle

Euler's theorem: An undirected graph has an eulerian cycle every vertex has even degree

So

No known polynomial-time algorithm decides (so)

G = (V, E) v ∈ V
G = (V, E) e ∈ E

G

HAM_CYCLE = {⟨G⟩ : G contains a hamiltonian cycle}

EULER_CYCLE = {⟨G⟩ : G contains an }

⟺
EULER_CYCLE ∈ P

HAM_CYCLE HAM_CYCLE ∉ P

Hamilton's game Euler's bridge problem

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf
https://en.wikipedia.org/wiki/Icosian_game#/media/File:Hamiltonian_path_3d.svg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Polynomial-time Verification And NP
If someone provided us with a hamiltonian cycle, we could verify it in polynomial time:

Check the cycle is a valid permutation of the vertices in and that each proposed edge exists in

A verification algorithm takes two arguments: input binary string and certificate binary string

Algorithm A verifies string if there exists certificate such that

The language verified by is

Complexity class is the class of languages that can be verified by a polynomial-time algorithm

 polynomial-time and constant such that

 certificate with s.t.

 polynomial-time and constant such that

 certificate with s.t.

Little has been proven about the relationships between , and

V E
A x y

x y A(x, y) = 1
A L = {x ∈ {0,1}* : ∃y ∈ {0,1}* : A(x, y) = 1}

NP
L ∈ NP ⟺ ∃ A c

L = {x ∈ {0,1}* : ∃ y |y | = O(|x |c) A(x, y) = 1}
L ∈ co-NP ⟺ ∃ A c

L = {x ∈ {0,1}* : ∃ y |y | = O(|x |c) A(x, y) = 0}
P NP co-NP

References:
D. Wilmer, Graduate Algorithms, Lec. 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

Lemma: If are languages such that then

Proof: Construct a polynomial-time algorithm to compute for any input

Let be a polynomial-time algorithm that decides

L1, L2 ⊆ {0,1}* L1 ≤P L2 L2 ∈ P ⟹ L1 ∈ P
F f(x) x

A2 L2

Reducibility
One strategy to solve a problem is to reduce (or recast) it to another problem that we can solve

In the formal-language decision problem framework:

 is polynomial-time reducible to , denoted , if there exists a polynomial-time computable

function such that ,

L1 L2 L1 ≤P L2
f : {0,1}* → {0,1}* ∀x ∈ {0,1}* x ∈ L1 ⟺ f(x) ∈ L2

References:
D. Wilmer, Graduate Algorithms, Lec. 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

L1
{0,1}* L2 {0,1}*f

 reduces to f L1 L2

 decides in polynomial timeA2 ∘ F L1

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

-completenessNP
A language is if for every

A language is if:

1. , and

2. for every

 is the complexity class of -complete languages

Why is -completeness so critical to the study of whether ?

Theorem: If any problem is polynomial-time solvable, then

Proof: Suppose in addition to .

By definition, we know that for any , so

This is why -complete problems receive a lot of attention

L ⊆ {0,1}* NP-hard L′ ≤P L L′ ∈ NP
L ⊆ {0,1}* NP-complete

L ∈ NP
L′ ≤P L L′ ∈ NP

NPC NP
NP P = NP

NP-complete P = NP
L ∈ P L ∈ NPC

L′ ≤P L L′ ∈ NP L′ ∈ P
NP

References:
D. Wilmer, Graduate Algorithms, Lec. 36, http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf (2017)
T. Cormen et al., "Introduction to algorithms", Chap 34, MIT press (2022)

 ⟹P = NP

http://www.cs.cmu.edu/afs/cs/academic/class/15750-s17/ScribeNotes/lecture36.pdf

