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Motivation - the state of the (machine perception) nation

Deep learning has achieved remarkable 
progress with supervised learning:  

•Gather a large collection of data and 
manually annotate it 

•Supervise a model with the resulting 
(data, annotation) pairs. 

Major gains on vision benchmarks!

Despite these successes, we still seem to 
have a long way to go: 

•Even the highest capacity models trained 
on the largest annotated datasets 
continue to make "silly" mistakes 

•It seems we can never get enough 
labelled data to get close to the human 
perception system

Reasons to be cheerful Causes for concern

Can we take inspiration from the early stages of development of human perception?



Self-supervised Learning - Motivation

L. B. Smith and M. Gasser, “The Development of Embodied Cognition: Six Lessons from Babies,” Artificial Life (2005) 
L. B. Smith et al., “The Developing Infant Creates a Curriculum for Statistical Learning”, Trends in Cognitive Sciences (2018) 
A. M. Turing, “Intelligent Machinery", (1948) 3

Babies build curriculaLessons from Embodied Cognition

Human baby learning is:

Multi-modal

Incremental

Physical Exploratory

Social

Language-
based

Heavy focus on a small 
number of objects

Practical Challenges

"In order that the machine 
should have a chance of 
finding things out for itself it 
should be allowed to roam 
the countryside, and the 
danger to the ordinary 
citizen would be serious."

Turing, 1948
We will discuss self-supervised methods 
(partly) inspired by human multi-modal 
learning (exploiting redundant signal)

There are practical challenges 
to embodied learning 

Simulation may help

Multi-modal

References/Image credits
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Redundancy provides knowledge - Barlow

To detect a new association (e.g. event C precedes 
event U), requires knowledge of the prior 
probabilities of C and U 

We can then learn new associations as occurrences 
of C followed by U more frequently than would 
happen by chance 

To know "what usually happens" we need 
redundancy in the input signal (e.g. views of the 
same event from different modalities) 

Redundant signal (by definition) can be predicted 
from remaining signal

Learning via prediction - Helmholtz

Each movement we make by which we 
alter the appearance of objects should be 
thought of as an experiment designed to 
test whether we have understood 
correctly the invariant relations of the 
phenomena before us, that is, their 
existence in definite spatial relations

Helmholtz, 1878

Generate labels by predicting the future

Generate labels from redundant signal



Self-supervised Learning - creating your own supervision

Reference:  
H. B. Barlow, "Unsupervised learning", Neural computation (1989)
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When learning pairwise associations between  events, we need to store  
co-occurrence probabilities 

If our representations of events C and U are statistically independent, we can 

compute the chance co-occurrence of  and  from their marginals: i.e. 

, so we need only store  event probabilities! 

Barlow suggested Minimum Entropy Coding to obtain such factorial 
representations - but this principle applies more generally

N N2

C U
P(C)P(U) N

Computational trick: factorial codes for learning new associations



Self-supervised Learning - creating your own supervision

References/Image credits:  
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6

Exploiting Multi-modal Correlation - de Sa

Learning signal: Minimise disagreement between class labels predicted from each modality

Note: in modern research, distinction between self-supervised & unsupervised can be blurry....
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Natural Language Processing

Predict next word (Bengio et al., 2003)

P(xT
1 ) =

T

∏
t=1

P(xt |xt−1
1 )

Unlabelled text corpora have long been used to provide supervision for neural networks, with 
the hope that their distributed representations will enable generalisation

Factor the probability of a 
sequence,  as conditionals:xT

1 ,

Predict next character (Schmidhuber et al., 1996)

Maximise likelihood of text corpus

highlighted 
importance 
of having 
lots of 
training data

Word2Vec was trained to 
predict surrounding words

BERT - trained to predict 
randomly masked words and 
next sentence prediction

Showed benefits of high-capacity 
bi-directional transformer

References/Image credits

Autoregressive models Predicting context Multitask masking

T. Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”, ICLR (2013) 
J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL (2019)



Back to Vision: context as supervision
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Computer Vision

In vision, we train network by playing a game (often called a pretext task) 
We typically don't care about performance on the pretext task itself, but we hope that 
by solving it, a model learns good representations of the visual world

C. Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV (2015)

Key idea: a model can only solve these 
questions once it learns about cats, buses and 
trains.  No labelling is required!

Warning: sometimes the model won't 
solve the task in the way you wanted!

Doersch et al. found that the network could "cheat" 
by exploiting chromatic aberration to solve the 
puzzle unless it was prevented from doing so.

References/Image credits Note: also a problem for AI safety



Pretext task: inpainting

D. Pathak et al., “Context Encoders: Feature Learning by Inpainting”, CVPR (2016) 9

Learning by Inpainting (Pathak et al., 2016)

References/Image credits

Train model to "inpaint" (fill in the gap) 
Loss contains two terms: 

•  loss on patch reconstruction (  is a patch): 

 

•Adversarial loss (inspired by GANs) 

 

 is a second network ("the discriminator") 
trained jointly with main model

L2 p
Lrec = | |ppred − pgt | |2

2

Ladv = maxD 𝔼pgt
[log(D(pgt)) + log(1 − D(ppred))]

D

inpaint

issue: blurry predictions

Encoder (w. L2 loss) learns useful features for classification, detection & segmentation 

Train  to recognise real dataD Train model to fool D

reduces blurrinessPretext task is actually useful!



Learning from jigsaws (Noroozi and Favaro, 2016)

permutation

Pretext task: jigsaw puzzles

M. Noroozi and P. Favaro, “Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles”, ECCV (2016)
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References/Image credits

shuffle solve

classification

Features can be used for:

image retrieval

Visualised activations:

Conv 1 Conv 4

permutation 
label



Learning from colourisation (Zhang et al., 2016)

Pretext task: Colourisation

R. Zhang et al., “Colorful Image Colorization”, ECCV (2016) 
https://phys.org/news/2017-07-images-deep-neural-networks.html 11

References/Image credits

colourise

Key premise: 
The model can only fill in "plausible" 
colours if it understand the image

Challenge: 
Colour distribution is multimodal 
L2 regression gives grey-ish colours 
Solution: 
Predict quantised Lab space 
values with cross entropy loss

classification
Features can be used for:

detection segmentation

https://phys.org/news/2017-07-images-deep-neural-networks.html


Learning in the presence of multimodal data

For many machine learning unimodal modelling problems, L2 regression is a good choice 
However, it's not a good fit for predicting multimodal distributions 
Why? 
Suppose we wish to model a single RGB pixel image that: 

Is pure red with probability : 

Is pure green with probability : 

Is pure blue with probability :

1
3

1
3

1
3

What's wrong with L2?

M. Mathieu et al., "Deep multi-scale video prediction beyond mean square error", arXiv preprint arXiv:1511.05440 (2015) 12
References

RGB: (1, 0, 0)

RGB: (0, 1, 0)

RGB: (0, 0, 1)

Training set

Loss: | |pgt − ppred | |2
2

Optimal solution: (0.33, 0.33, 0.33)

Samples from model



Learning from counting (Noroozi et al., 2017)

Pretext task: Counting

M. Noroozi et al., “Representation Learning by Learning to Count”, ICCV (2017) 13
References/Image credits

Features can be used for:

detection segmentationclassification

Consistency constraint

Problem:

Model can predict a 
count of 0 for every 
image we give it

"Trivial solution"

Solution: add 
contrastive images and 
enforce different counts

The counted concepts are not specified directly  
(they are chosen by the model)



Gestalt Principle: Common Fate

Grouping/Common Fate

Simulation: https://isle.hanover.edu/Ch05Object/Ch05CommonFate_evt.html 14
References/Image credits

The Gestalt school of psychology 
emerged in the early 20th Century 

It proposed several of "grouping 
principles" to explain human perception 

The principle of "common fate": 
We perceive visual elements that move 
with the same velocity as being part of 
a single whole



Learning from Gestalt principles (Mahendran et al., 2018)

Pretext task: Grouping/Common Fate

A. Mahendran et al., “Cross Pixel Optical Flow Similarity for Self-Supervised Learning”, ACCV (2018) 15
References/Image credits

Key idea: pixels that belong to the same object are much more likely to "move together" than 
pixels that do not

Note: optical flow is a 2D vector field where each vector is a displacement vector showing the 
movement of points from one frame to another

Consistency constraint

Encourages 
network to learn 
embeddings of 

pixels that move 
together

Result: it learns to 
segment objects

Features can be used for:

detection segmentationclassification



Learning from photographer bias (Gidaris et al., 2018)

Pretext task: Rotations

S. Gidaris et al. “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR (2018) 16
References/Image credits

Humans take photos "the right way up" 
If images are rotated anticlockwise by 0°, 90°, 
180° or 270° we can spot the rotation

How?By understanding the image content
Supervised Self-supervised

Empirically, this learns 
very strong features First layer filters



Learning from clustering (Caron et al., 2018)

Pretext task: Clustering

M. Caron et al., “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV (2018) 17
References/Image credits

Produces very strong features

Note: Even with random weights, a CNN 
performs much better than random clustering

Visualised activations (last conv)



Learning from augmentations (Chen et al., 2020)

li,j = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 𝕀k≠i exp(sim(zi, zk)/τ)

Contrastive Learning

T. Chen et al., "A simple framework for contrastive learning of visual representations", ICML (2020) 18
References/Image credits

SimCLR: "Simple Framework for contrastive learning of visual representations"

Objective: instance discrimination within batches 

Implement with a contrastive loss. For positive pair :(i, j)

Idea: Data augmentation preserves semantic meaning

all pairs

positive pair



Masked Autoencoders and scalable learning (He et al., 2022)

Masked Autoencoders

K. He et al., "Masked autoencoders are scalable vision learners", CVPR (2022) 19
References/Image credits

Idea: Pixel reconstruction with high masking 
ratios, high-capacity transformers and L2 loss 
Reconstructions are blurry, but still drive 
strong feature learning

Mask 75% 
of patches

Efficient asymmetric encoder-decoder

Processes 25% 
of patches Lightweight decoder

Long training 
schedules are vital

input pred GT input pred GT


