
Transformers

How they 
work

Where they 
come from

Rich Sutton

(Reinforcement Learning Pioneer)

CNNsHandcrafted (e.g. SIFT)

"The Bitter Lesson"

General methods that leverage 
computation are ultimately the most 
effective.

Inductive biases

Many! Fewer Fewer still

Motivation



Why Care About Neural Network Architectures?
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D.E. Rumelhart, G. E. Hinton and J. L. McClelland, "A general framework for parallel distributed processing", PDP: Explorations in the microstructure of cognition (1986) 2

Deep learning descends from connectionism: 

Wiring of computational networks plays key role in building intelligent machines 

Structures that define the wiring: 

•Architecture - connections fixed in training (e.g. operation types) 

•Parameters - connections updated in training (e.g. kernels learned via SGD/backprop) 

Background

We inhabit a resource-limited environment. We have limited supplies of: Goals

Greatest task performance (e.g. accuracy) Acceptable resource burden

Typically, we want architectures with:

Energy Computation Memory Time

Changes over 
time!

Focus of architecture design



Natural Language Processing Machine Translation Vision Transformers (ViTs)Computer Vision

Why did it take 3 years? Why Google?



Three popular variants:

What is a Transformer?

References  
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Encoder

Decoder

Encoder: learns useful representation of input 

Decoder: "decodes" encoded representation and 

combines with other input to predict output

Encoder-Only

Decoder-Only

Encoder-Decoder

- useful for learning representations

- useful for generation tasks

- useful for sequence-to-sequence

GPT-3

BERT



ViT: Vision Transformer (Encoder-Only)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)
References/Image credits

What's going on 
inside here?



Stabilise learning
Allows embeddings to 

communicate

Transformer Encoder

Layer Normalisation
Multi-Head Attention

Residual Connections
Allows embeddings to 
"think" independently

Multi-Layer Perceptron

References/Image credits 
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021) 
Credit for "communicate/think" metaphor - Andrej Karpathy

Compute-heavy blocks
Optimisation blocks

Help gradients flow

Five key ideas

Allows transformer to 
identify embeddings

Positional Embeddings



Single-Head Attention
Input to the attention block 

 embeddings with dimension  
 is the num. patches 

N D
N +1

N = 3, D = 2

Stack embeddings 
into matrix X ∈ ℝN×D

Problem: How can we allow 
the  embeddings to 
communicate with each other?

N

We project each embedding: 
Queries: "Here's what I'm looking for" 
Keys: "Here's what I have" 
Values: "What gets communicated"  

Queries Keys Values

References 
Credit for attention metaphor - Andrej Karpathy 
https://unsplash.com/photos/lion-in-black-background-in-grayscale-photography-8a7ZTFKax_I

WQ ∈ ℝD×dk

WK ∈ ℝD×dk

WV ∈ ℝD×dv

 is dimension of queries & keys,  is dimension of valuesdk dv

Q = XWQ ∈ ℝN×dk K = XWK ∈ ℝN×dk V = XWV ∈ ℝN×dv

Scaled dot-product attention 

Y = Softmax( QKT

dk
)V ∈ ℝN×dv

 matrixN × N

Normalise rows 
to prob. vectors

Avoids "peaky" affinities

Weighted sum of values

If  and  are independent random 
variables with mean 0 and variance 1, 

then  has variance  

q k

q ⋅ k =
dk

∑
i=1

qiki dk

https://unsplash.com/photos/lion-in-black-background-in-grayscale-photography-8a7ZTFKax_I


Multi-Head Attention
What if the patches want to send multiple messages? 
Solution: perform multiple attention operations in parallel 

We use  attention "heads": 

for  

      

     

     

     

H
h = 1,…, H :

Qh = XWQ
h

Kh = XWK
h

Vh = XWV
h

headh = softmax( QhKT
h

dk
)Vh

MultiHead(X) = Concat(head1, …, headh)WO

Executed in parallel

Can be achieved efficiently 
with batched matrix 
multiplication

Quadratic in 
sequence length!

Typically, for multi-head attention 
(MHA) we make the head 
dimensions smaller: 

 
Total computational cost is 
similar to single-head attention 

Complexity of MHA (ignoring 

projections): 

dk = dv = D/H

O(N2 ⋅ D)

Project the results



Multi-Layer Perceptron (MLP)

References 
Credit for "communicate/think" metaphor - Andrej Karpathy  
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)

After the embeddings have communicated, we'd like them 

to do some "thinking alone" about what they've learned 

This is implemented with a 2-layer MLP that is applied 

independently on each embedding: 

 

where  is a non-linearity 

Typically, we use an expansion factor of 4:

MLP(x) = W2 σ(W1x + b1) + b2

σ( ⋅ ) ReLU GeLU

σ( ⋅ )

x ∈ ℝD

W1 ∈ ℝD×4D

∈ ℝ4D ∈ ℝ4D

∈ ℝD

W2 ∈ ℝD×4D



Residual Connections

References 
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021) 
Quote from K. He et al., "Deep residual learning for image recognition", CVPR (2016)

Residual connections help with 

optimisation 

Why? 
"We hypothesize that it is easier to 

optimize the residual mapping 

than to optimize the original, 

unreferenced mapping." 

Learning deep networks without 

residual connections is difficult

Y = X + MHA(Norm(X))

Out = Y + MLP(Norm(Y))

🤷 Deep learning...

Intuitions: 

Help with gradient flow 

(avoids vanishing gradients) 

Help with preconditioning 



N

B

D

LayerNorm

LayerNorm

References 
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021) 
S. Shen et al., "Powernorm: Rethinking batch normalization in transformers", ICML (2020)

LayerNorm is very similar to BatchNorm: 

y =
x − 𝔼[x]
Var[x] + ϵ

⋅ γ + β
for numerical stability

Learned gain

Learned bias

Difference vs BatchNorm: how we estimate  and  

So far, we've had  input matrices: 

 is the sequence length,  is the embedding dim. 

In practice, we process  (where  is the minibatch size)

𝔼[x] Var[x]

N × D

N D

B × N × D B

N

D

LayerNorm has 

•No dependence 

on batch dim. 

•Same procedure 

at train/test time

N

D

B
BatchNorm



Position Embeddings

References 
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021) 
Positional Embeddings Visualisation https://nlp.seas.harvard.edu/2018/04/03/attention.html

Motivation: transformer encoder treats input as set 

Once we've split the images into patches, we've thrown 

away their relative positions! 

Solution: position embeddings "label" patch with position

How do we "label" positions? 

Hand-crafted position embeddings: 

 PE(pos, 2i) = sin( pos
10,0002i/D )

PE(pos, 2i + 1) = cos( pos
10,0002i/D )

"This is the top 
left patch"

Alternative (used in ViT): learn 

the embeddings from scratch

pos = 10 pos = 30

PEs are an active area of research



References 
A. Vaswani, et al. "Attention is all you need." Advances in neural information processing systems (2017)  
J-B Alayrac et al., "Flamingo: a visual language model for few-shot learning", NeurIPS (2022) 
https://nlp.seas.harvard.edu/2018/04/03/attention.html

So far: queries, keys and values have 

been produced from the same sequence 

This is called "self attention" 

Alternative: "cross attention" - queries 

from one sequence, keys and values from 

a different sequence

When generating sequences, we don't 

want all embeddings to communicate 

Only allow "causal" attention: 

(softmax turns each  into 0)−∞

Cross/Causal Attention

N

N
1

−∞



Scaling Up

References/Image credits 
D. Amodei and D. Hernandez, "AI and Compute", 2018

2-year doubling (Moore's Law)

3.4 month 

doubling

1 petaflop/s-day is 8 V100 
GPUs running for 1 day



Scaling up further

References/Image credits 
https://epochai.org/blog/announcing-updated-pcd-database

GPT-4 uses nearly 8 orders of magnitude 
more compute than AlexNet!

https://epochai.org/blog/announcing-updated-pcd-database


What factors are enabling effective compute scaling?

D. Hernandez and T. Brown, "Measuring the Algorithmic Efficiency of Neural Networks”, arXiv (2020)

Estimated cost of 
training GPT-4: 

O(100 Million) USD

https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/

Effective compute  
FLOPs required to 

reach AlexNet-level 
ImageNet 

performance

≈

References/Image credits



References/Footnotes: 
P. Anderson, “More is different”, Science (1972) 
The "wisecrack" of Hemingway appears as a comment made by a character in one of his novels (http://www.quotecounterquote.com/2009/11/rich-are-different-famous-quote.html) 
R. Hamming, “The Art of Doing Science and Engineering: Learning to Learn” (1997)

The Importance of Scale

“In almost all fields, a factor of ten means fundamentally new effects.  If you 
increase magnification by a factor of 10 in Biology, you will see new things.”

Hamming, Art of doing science and engineering, 1997

FITZGERALD: The rich are different from us. 
HEMINGWAY: Yes, they have more money.

Is it "just engineering", or something more fundamental? 

Note: It is challenging to analyse shifts from quantitative to qualitative differentiation

How important is scale for Deep Neural Networks?

Is cell biology "just" applied molecular biology?  
Is molecular biology "just" applied chemistry? 
Is chemistry "just" applied many-body physics?  
.... 
One science obeys the laws of the other 
At each stage, new laws and concepts are necessary

Hierarchy of sciences

Qualitative vs Quantitative

http://www.quotecounterquote.com/2009/11/rich-are-different-famous-quote.html


Transformer scaling laws for natural language

J. Kaplan et al., “Scaling Laws for Neural Language Models”, arxiv (2020) 

Predictable scaling

Transformer performance on 

language modelling tasks scales 

predictably as a power law with: 

•Compute 

•Training data size 

•Model size

Some power laws were found that span more than six orders of magnitude

References/Image credits
Performance also only weakly 

depends on model shape



Transformer scaling laws for natural language
Intriguing characteristics

Kaplan et al., “Scaling Laws for Neural Language Models”, arxiv (2020)  
J. Hoffmann et al., "Training Compute-Optimal Large Language Models", arXiv (2022)

Larger models require fewer samples 
to reach the same performance

If extra compute is available, allocate most 
towards increasing the model size!
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References/Image credits
Later studies (Chinchilla) suggest greater focus on data

Tokens processed



Scaling Vision Transformer

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)

ViT: The importance of pre-training scale

ImageNet transfer performance

1.3M images 14M images 303M images

(CNN)

In lower-data regime, the stronger 
inductive biases of the CNN work better: 

•locality 

•translation invariance 

But in the higher-data regime (e.g. 
JFT-300M), ViT shines.

Larger CNN

Smaller CNN

References/Image credits

(This is "why Google")

ViT beats strongest CNN



Vision Transformer and Learned Locality

M. Raghu et al., "Do vision transformers see like convolutional neural networks?" NeurIPS (2021)

References/Image credits

With enough data (300M 
images), earlier layers learn 
to "act locally" (like a CNN)

When pretraining on only 
1M images, lower attention 
layers do not learn locality

Large-scale pretraining 
allows ViT to get "best of 
both": local and global



Image credit: Stable diffusion (lexica.art) 
https://lexica.art/prompt/16135179-6a39-496a-9a7f-c4a06cdd8ff5

See video description below for links to:

Slides

References


