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Why Care About Neural Network Architectures?

Deep learning descends from connectionism: Background

Wiring of computational networks plays key role in building intelligent machines

Structures that define the wiring:

* Architecture - connections fixed in training (e.g. operation types) <€ ZeYel FRe Aol del 1 Lo (T 0-0e Chile 8

® Parameters - connections updated in training (e.g. kernels learned via SGD/backprop)

Goals

We inhabit a resource-limited environment. We have limited supplies of:

Typically, we want architectures with:

Changes over
Greatest task performance (e.g. accuracy) @ Acceptable resource burden J

timel

References
J. A. Fodor and Z. W. Pylyshyn, "Connectionism and cognitive architecture: A critical analysis", Cognition (1988)
D.E. Rumelhart, G. E. Hinton and J. L. McClelland, "A general framework for parallel distributed processing", PDP: Explorations in the microstructure of cognition (1986) 2
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks in an encoder-decoder configuration. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

1706.03762v1 [cs.CL] 12 Jun 2017

arxiv

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
transduction problems such as language modeling and machine translation [31, 2, 5]. Numerous
efforts have since continued to push the boundaries of recurrent language models and encoder-decoder
architectures [34, 22, 14].

2010.11929v1 [cs.CV] 22 Oct 2020

Natural Language Processing | Machine Translation

Why did it take 3 years? | Why Google?

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!

1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters. With the models and datasets growing, there is still
no sign of saturating performance.

Computer Vision | Vision Transformers (ViTs)




What is a Transformer?

Encoder: learns useful representation of input
Encoder

Decoder: "decodes" encoded representation and

combines with other input to predict output

Three popular variants:

[l IZO LA - useful for learning representations {14

DIEYLL SO0 WA - useful for generation tasks [REIdEe

Add & Norm
Multi-Head
Attention
1 J

Positional ;‘
Encoding ‘« &
Input
Embedding

INnputs

[l LIEPLYST VM - useful for sequence-to-sequence
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A. Vaswani, et al. "Attention is all you need." Advances in neural information processing systems (2017)
"Transformer Models", https://huggingface.co/learn/nlp-course/chapter]
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ViT: Vision Transformer (Encoder-Only)
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References/Image credits
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)



Transformer Encoder

Compute-heavy blocks

Optimisation blocks

1 MLP
MultiLayer Perceptron ] Residual Connections
Allows embeddings to .
"think" independently Norm Help gradients flow

Multi-Head Attention  Multi-Head 1 Layer Normalisation
: Attention Stabilise learning
Allows embeddings to \ f A
communicate Norm
Embedded
Patches < Positional Embeddings

References/Image credits A”OWS h'CInSI:O rmer to
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021) .d . b dd.
Credit for "communicate/think" metaphor - Andrej Karpathy | enflf)' empe |ngs




Single-Head Attention
We project each embedding:

Queries: "Here's what I'm looking for" W¢ € RP*4%
Keys: "Here's what | have" WK ¢ RDx4
Values: "What gets communicated" W' € RP*4

d, is dimension of queries & keys, d, is dimension of values

Q = XW€ € RM4U K = XW* € RV4V = XW" € RV
Scaled dot-product aﬂention

K7
Y = Softmax( Q > )V e RNxd
k

A
Normalise rows Weighted sum of values
to prob. vectors
Avoids "peaky" affinities
References
Credit for attention metaphor - Andrej Karpathy

hitps://unsplash.com/photos/lion-in-black-background-in-grayscale-photography-8a7 ZTFKax_|

Input to the attention block
N embeddings with dimension D

N is the num. patches +1

LI O [ v=3,D=2

Stack embeddings
into matrix X € RV*<P

Problem: How can we allow

the N embeddings to
communicate with each other?

If ¢ and k are independent random
variables with mean O and variance 1,

dk
then g - k = Z g;k; has variance d,
i=1



https://unsplash.com/photos/lion-in-black-background-in-grayscale-photography-8a7ZTFKax_I

Multi-Head Attention

What if the patches want to send multiple messages? Typically, for multi-head attention

Solution: perform multiple attention operations in parallel (MHA) we make the head

We use H attention "heads": dimensions smaller:
dk — dv — D/H

torh=1,...,H: Executed in parallel

Q) = XW;? Can be achieved efficiently
K, =XW; with batched matrix

V, = XWX multiplication

Total computational cost is

similar to single-head attention

Complexity of MHA (ignoring
projections): O(N* - D)

Quadratic in
sequence length!

head, = softmax(

MultiHead(X) = Concat(head,, ..., head,) W?

Project the results



Multi-Layer Perceptron (MLP)

After the embeddings have communicated, we'd like them

to do some "thinking alone" about what they've learned

This is implemented with a 2-layer MLP that is applied

independently on each embedding:

where o( - ) is a non-linearity
Multi-Head Typically, we use an expansion factor of 4:
Attention

References
Credit for "communicate/think" metaphor - Andrej Karpathy
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)



Residual Connections

References

Residual connections help with

optimisation

"We hypothesize that it is easier to

optimize the residual mapping

than to optimize the original,

unreferenced mapping."
Learning deep networks without

residual connections is difficult

Deep residual learning for image recognition
K He, X Zhang, S Ren, J Sun - ... and pattern recognition, 2016 - open

... Deeper neural networks are more difficult to train. We present a resi
to ease the training of networks that are substantially deeper than those

¢ Save 9YY Cite Cited by 188754 Related articles All 76 versions

1

MLP

Out = Y + MLP(Norm(Y))

‘0

\ g
‘I.llll“

T §

Norm

Multi-Head
Attention

Y = X + MHA(Norm(X))

|

Norm

Intuitions:

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)

Quote from K. He et al., "Deep residual learning for image recognition", CVPR (2016)

Help with gradient flow

(avoids vanishing gradients)

Help with preconditioning



I. N LayerNorm is very similar to BatchNorm:
ayerNorm K
Y

y:

— w \/ Varlx] + € for numerical stability
X

Difference vs BatchNorm: how we estimate E[x] and Var|[x]
. MLP | - - »
: So far, we've had N X D input matrices:
[ No ] N is the sequence length, D is the embedding dim. N @
orm
' ’ In practice, we process B X N X D (where B is the minibatch size)
‘ BatchNorm LayerNorm
- Multi-Head B B
Attention LayerNorm has
. * ) R S * No dependence
[ Norm ] N \i\\ 1 ;/ N \i\\ 1 :
. | U = o B N SN i SN g on batch dim.
| NN NN g
\Q\i\ /; /j = \Q\\\ PP ® Same procedure
=
D\\ij// D\\ij// at train/test time

References
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)
S. Shen et al., "Powernorm: Rethinking batch normalization in transformers", ICML (2020)



How do we "label" positions?

Position Embeddings

Hand-crafted position embeddings:

PE(00s.21) — s ( pos )
0s,2i) = sin .
P 10.0002i/D

Transformer Encoder

e - 4 o 8)8) ) 6

Linear PrOJectlon of Flattened Patches

PE(pos, 2i + 1) ( po )
0s, 2i = COS .
P 10.0002i/D

‘i\ /

"This is the top
left patch”

Motivation: transformer encoder treats input as set

Once we've split the images into patches, we've thrown

away their relative positions!

Solution: position embeddings "label" patch with position Alternative (used in ViT): learn

References the embeddings from scratch
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)

Positional Embeddings Visualisation https://nlp.seas.harvard.edu/2018/04/03/attention.hitml PES are an CICﬁVe aredq OF resed I'Ch



Qutput

Cross / Causal Attention Probabilfies

So far: queries, keys and values have

been produced from the same sequence

This is called "self attention”

Alternative: "cross attention" - queries

Multi-Head
Attention

from one sequence, keys and values from

a different sequence e Flamingo

Add & Norm

N x

Multi-Head
Attention

When generating sequences, we don't
-

. Add & Norm |
Multi-Head
Attention

want all embeddings to communicate

Positional

. o . . Positional
Only allow "causal" attention: N Encoding e D D e Encoding

. | O
(softmax turns each —co info 0) 1

References
A. Vaswani, et al. "Attention is all you need." Advances in neural information processing systems (2017) Inputs Outputs
J-B Alayrac et al., "Flamingo: a visual language model for few-shot learning"”, NeurlPS (2022) (shifted right)

hitps://nlp.seas.harvard.edu/2018/04/03/attention.html



®
c a I n g U p Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days

let+4
AlphaGoZero
O
o
le+2 Neural Machine.
Translation ~
o ©TI7 Dotalvl
le+0
VGG :
o
ResNets
le-2 AIexNet. ¢

o
3.4-month doubling

] pei'ClﬂOp/S-dCI)' iS 8 V]OO le-4 Deep Belief Nets and

layer-wise pretraining. °

DQN

GPUs running for 1 day

le-6 o

TD-Gammon v2.1. °
BiLSTM for Spezech
. o o 3.4 month
NETtalk ®RNN for Speech doubling
1 ALVINN
le-12 . i
2-year doubling (Moore's Law)
le-14 Perceptron ¢ Frirst Era Modern Era 2
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References/Image credits

D. Amodei and D. Hernandez, "Al and Compute", 2018



Scaling up further

Compute (FLOP)
028 : GPT-4 (2023)—¢g
GPT-4 uses nearly 8 orders of magnitude /O
more compute than AlexNet! PalM (2022)
1020
O
LSTM (1997)
1015 \
O
N Perceptron (1957) Transformer (2017)
10
O
10°
1950 1960 1970 1980 1990 2000 2010 2020

Year

References/Image credits
hitps://epochai.org/blog/announcing-updated-pcd-database



https://epochai.org/blog/announcing-updated-pcd-database

Effective compute
FLOPs required to
reach AlexNet-level
ImageNet
performance

Estimated cost of
training GPT-4:
O(100 Million) USD

References/Image credits
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Growth in Effective Compute
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2013 2014 2015 2016 2017 2018

D. Hernandez and T. Brown, "Measuring the Algorithmic Efficiency of Neural Networks”, arXiv (2020)

hitps://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/

What factors are enabling effective compute scaling?

Algorithms
(conservative)

Compute



The Importance of Scale

How important is scale for Deep Neural Networks?

ls it "just engineering", or something more fundamental?

Note: It is challenging to analyse shifts from quantitative to qualitative differentiation

Hierarchy of sciences

Is cell biology "just" applied molecular biology?
Is molecular biology "just" applied chemistry? Qualitative vs Quantitative

Is chemistry "just” applied many-body physics? FITZZGERALD: The rich are different from us.
HEMINGWAY: Yes, they have more money.

One science obeys the laws of the other

At each stage, new laws and concepts are necessary

“In almost all fields, a factor of ten means . If you
increase magnification by a factor of 10 in Biology, you will see new things.”

References/Footnotes: Hamming, Art of doing science and engineering, 1997
P. Anderson, “More is different”, Science (1972)

The "wisecrack" of Hemingway appears as a comment made by a character in one of his novels (http://www.quotecounterquote.com/2009/11 /rich-are-different-famous-quote.html)
R. Hamming, “The Art of Doing Science and Engineering: Learning to Learn” (1997)
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Transformer scaling laws for natural language

Predictable scaling

Transformer performance on
P L.oss vs Model and Dataset Size

: —
language modelling tasks scales 45] e .
. . -.;..::.’.. REEE TR @ e P
predictably as a with:  a0f e Params
P R TR ®.. 708M
.
* Compute 2 3.5 g ooy
] ®-...
e o o O I & 3M
* Training data size 3.0 ° 25M
® 393.2K
* Model size -
107 108 10° 100

Tokens in Dataset

Some power laws were found that span more than six orders of magnitude

Performance also only weakly

References/Image credits

depends on model shape

J. Kaplan et al., “Scaling Laws for Neural Language Models”, arxiv (2020)



Transformer scaling laws for natural language

Intriguing characteristics

N\ E 108 Minimum serial steps 096 _E
\\\ ! = iIncreases negligibly — —~ . \5‘ O
2
WA\ ﬁ 6@(\ e i a
— - §) - 1 -
« \\ 103 Params = 10 L\Q* o0 S\
=~ & \ _ ® QO
-~ N e 2> 104 - A o e
N 109 Params —— '\ = S\
2 E ox oS g
4 N E 102 \ 000’00 z
- 7
>
. . , 100 . . . S
o - o 108 10  10* 107 100
Tokens processed vompute (FE-days)
Larger models require fewer samples If extra compute is available, allocate most
to reach the same performance towards increasing the model size!

References/Image credits

Later studies (Chinchilla) suggest greater focus on data

Kaplan et al., “Scaling Laws for Neural Language Models”, arxiv (2020)
J. Hoffmann et al., "Training Compute-Optimal Large Language Models", arXiv (2022)



Scaling Vision Transformer

ViT: The importance of pre-training scale
ViT beats strongest CNN

ImageNet transfer performance

90
< - In lower-data regime, the stronger
e . . . .
3'85{ Larger CNN inductive biases of the CNN work better:
S o locals
< T ocality
= 801 | L :
g ® translation invariance
Z 75 BiT(CNN) @ ViT-L/32 But in the higher-data regime (e.g.
5D Smaller CNN ¢ vit g3 ViT-L/16
5 I I-L _—
g e AT JFT-300M), ViT shines.

70 -

ImageNet ImageNet-21k JFT-300M

Pre-training dataset

1.3M images [l 14M images |l 303M images

References/Image credits
Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR (2021)

(This is "why Google")




Vision Transformer and Learned Locality

VIiT-L/16 JFT to ImageNet VIiT-L/16 on ImageNet
1201 120-
/_o—o-——o—o—f-—'% *——0—0—90—90

100 100 -
S S
C 80 C 80
© S
% 0
0O 60 0O 60;
: :
(U ([ [ J
8 w0  evcoder biocko | 2 400 —— encoder blocko Large-scale pretraining

—— encoder block1 —— encoder_block1l .
20 —— encoder _block22 207 —— encoder_block22 GIIOWS V|T |'O get "beSt Of
encoder block23 encoder _block23
O 3 4 & & 10 12 14 %2 4 6 8 10 12 14 both": local and global
Sorted Attention Head Sorted Attention Head

With enough data (300M When pretraining on only
images), earlier layers learn 1M images, lower attention

to "act locally" (like a CNN)  layers do not learn locality

References/Image credits

M. Raghu et al., "Do vision transformers see like convolutional neural networks2" NeurlPS (2021)



See video description below for links to:

Slides
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