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Motivation for the workshop
The field of Machine Learning is thriving

Is there room for improvement?

Peer review lies at the heart of modern ML research
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Factors that are not well addressed by typical ML review
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Key takeaway: Exploratory computation is important. It is hidden.

The Hidden Compute Variable

In the typical ML review process reviewers (and paper readers) do not know how many experiments were run. 

Issue if significant disparity in computing resources available to different researchers evaluating on same benchmarks.

Hidden information

Arch a Arch A
Run 1 72.6 79.4
Run 2 70.4 75.6
Run 3 78.9 74.7
Mean 73.1 79.2
Std 4.4 2.5

SoTA

Arch a Arch b Arch c
Run 1 72.6 73.8 76.6
Run 2 70.4 71.5 76.7
Run 3 78.9 73.8 73.7
Mean 73.1 70.2 72.7
Std 4.4 1.3 1.7

Blue Researcher (3 GPUs) Red Researcher (13 GPUs)

Arch A Arch B Arch C Arch D Arch E Arch F Arch G Arch H Arch I Arch J Arch K Arch L Arch M
79.4 71.3 72.3 78.2 79.4 72.7 78.6 73.0 78.3 72.2 79.6 78.0 72.9
75.6 76.6 75.7 76.2 77.3 77.1 78.6 70.5 79.3 74.9 75.9 78.3 70.0
74.7 77.0 79.6 71.7 78.4 72.9 75.5 72.8 70.3 71.0 73.8 73.4 72.2
79.2 72.3 70.8 70.3 72.5 70.3 72.0 79.0 74.1 70.4 78.4 71.9 72.5

2.5 3.2 3.6 3.3 1.1 2.5 1.8 1.4 4.9 2.0 2.9 2.7 1.5

Table 1: Importantly, our Arch A 
outperforms their Arch a by a wide margin, 
with a lower standard deviation across runs

What the reviewer sees

Same 
distribution



Benchmarks: risks

By practical necessity, benchmarks can often only provide an simplified (imperfect) model for a phenomenon of interest. 

Misalignment: Over-reliance on benchmarks can produce make achieving state-of-the-art (SOTA) more important than 
advancing the collective knowledge of the community about underlying phenomena that we care about. 

Misallocation: They can lead to inefficient resource allocation by trapping the community in local minima (neural networks....) 

Degradation: Statistical power heavily affected by disparities in exploratory compute; weakens over time.

Key takeaway: Benchmarks are very important, but they have challenges

The Tyranny of SOTA
Common experimental benchmark datasets have been incredibly valuable for our field.  

•They allow direct, controlled comparisons of methods 

•Drive community progress towards important research questions 

•Highlight scenarios where existing methods fail

Benchmarks: benefits



Incentives for Negative Results

Key takeaway: No incentive for negative results in typical ML review process

Negative Results

Well-motivated, well-executed experiments can provide inconclusive and/or negative results. 

No incentive to invest time in preparing such results for publication, since they would be highly unlikely to be accepted. 

But these results can convey useful information for the community: 

•Avoid duplication (wasted resources) 

•Provide insight (particularly if detailed studies are conducted to understand the cause of the negative result)



Central Idea

Pre-registration Protocol
Objective

Benefits

Reference 
Figure credit: https://www.cos.io/initiatives/registered-reports

Enforce a clear separation between: 

•Postdiction (exploratory analysis) 

•Prediction (hypothesis testing)

Negative 
Results

The Hidden 
Compute Variable

The Tyranny 
of SoTA

Reviewers see 
full study plan

Reviewer cannot accept/
reject based on SoTA

Review before 
results are known

LimitationsNot suitable for all types of paper (highly exploratory work, for example)  

Not a defence against dishonesty



Pre-registration - workshop
Objective: conduct a full pre-registration review process  

•Submit a pre-registration proposal (4-5 pages) 

•Two rounds of review (including rebuttal) 

10 accepted proposals (from 22 submissions) will be presented here today.

This is the second NeurIPS pre-registration workshop for Machine Learning. 

Following the workshop last year, accepted results papers were published at a special edition of PMLR. 

We will hear from the authors of of several papers from last year who published results papers in the workshop today! 

Authors of accepted proposals will be invited to submit their results to another special issue of PMLR.

Workshop protocol

What about results?



Sessions

•Invited talks will be followed by live Q&A 

•Spotlights will be followed by live shared Q&A 

•If you are an author in the session, please join the zoom link (at https://neurips.cc/virtual/2021/workshop/21885) 
to answer questions 

•The poster session will take place on GatherTown. The link can be found at http://preregister.science/ 

•The final session is a live open discussion - everyone is invited to participate. 

https://neurips.cc/virtual/2021/workshop/21885


Asking Questions

Questions can be asked on RocketChat - we will read them aloud to the speakers 

Important note: There is a delay of 60 seconds between the zoom session and the NeurIPS streaming webpage (so it's 
best to write your questions before the end of the talk). 

If you wish to ask a question in person, join the zoom link and raise your hand (so we can promote you as panelist). 

Recording notice: we are recording the workshop. Please let us know afterwards if you would like to be removed from the 
recording before it is shared.



Workshop schedule (GMT)

Schedule can be found on NeurIPS 
workshop page (https://neurips.cc/
virtual/2021/workshop/21885) 

and the workshop webpage 
http://preregister.science/

We are here

https://neurips.cc/virtual/2021/workshop/21885
https://neurips.cc/virtual/2021/workshop/21885
https://neurips.cc/virtual/2021/workshop/21885


Thank you!

Up-to-date schedule and details at 
http://preregister.science/


