ReCo: Retrieve and Co-segment for Zero-Shot Transfer



Summary: A short description of the ReCo framework introduced in the work "ReCo: Retrieve and Co-segment for Zero-shot Transfer" by G. Shin, W. Xie and S. Albanie, published at NeurIPS in 2022.
Paper: arxiv link
Topics: semantic segmentation, foundation models, zero shot transfer
Slides: link (pdf)

References
  • C. Rother et al., "Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs", CVPR (2006)
  • J. Deng et al., "Imagenet: A large-scale hierarchical image database", CVPR (2009)
  • R. Mottaghi et al., "The role of context for object detection and semantic segmentation in the wild", CVPR (2014)
  • P. Pinheiro et al., "From image-level to pixel-level labeling with convolutional networks", CVPR (2015)
  • M. Cordts et al., "The cityscapes dataset for semantic urban scene understanding", CVPR (2016)
  • A. Bearman et al., "What’s the point: Semantic segmentation with point supervision", ECCV (2016)
  • D. Lin et al., "ScribbleSup: Scribble-supervised convolutional networks for semantic segmentation", CVPR (2016)
  • D. Papadopoulos et al., "Extreme clicking for efficient object annotation", ICCV (2017)
  • H. Zhao et al., "Open vocabulary scene parsing", ICCV (2017)
  • H. Caesar, "Coco-stuff: Thing and stuff classes in context", CVPR (2018)
  • R. Geirhos et al., "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness", ICLR (2018)
  • L-C. Chen et al., "Encoder-decoder with atrous separable convolution for semantic image segmentation", ECCV (2018)
  • H. Chen et al., "Semantic aware attention based deep object co-segmentation", ACCV (2018)
  • K-J. Hsu et al., "Co-attention CNNs for unsupervised object co-segmentation", IJCAI (2018)
  • P. Bilic et al., "The liver tumor segmentation benchmark (lits)", arXiv (2019)
  • X. Ji, "Invariant information clustering for unsupervised image classification and segmentation", CVPR (2019)
  • J-J. Hwang et al., "Segsort: Segmentation by discriminative sorting of segments", ICCV (2019)
  • M. Bucher et al., "Zero-shot semantic segmentation", NeurIPS (2019)
  • X-Y. Tong et al., "Land-cover classification with high-resolution remote sensing images using transferable deep models", RSE (2020)
  • P. Sun et al., "Scalability in perception for autonomous driving: Waymo open dataset", CVPR (2020)
  • Y. Ouali, "Autoregressive unsupervised image segmentation", ECCV (2020)
  • X. Zhang, "Self-supervised visual representation learning from hierarchical grouping", NeurIPS (2020)
  • M. Caron et al., "Emerging properties in self-supervised vision transformers", ICCV (2021)
  • M. Naseer et al., "Intriguing properties of vision transformers", NeurIPS (2021)
  • A. Radford et al., "Learning transferable visual models from natural language supervision", ICML (2021)
  • C. Zhou et al., "Extract free dense labels from clip", arxiv (2021)
  • M. Weber et al., "STEP: Segmenting and Tracking Every Pixel", NeurIPS Data Track (2021)
  • F. Panella et al., "Firenet dataset", https://www.firenet.xyz/
  • J. Cho et al., "PiCIE: Unsupervised semantic segmentation using invariance and equivariance in clustering", CVPR (2021)
  • G. Shin et al., "All you need are a few pixels: semantic segmentation with PixelPick", ICCVW (2021)
  • W. Van Gansbeke et al., "Unsupervised semantic segmentation by contrasting object mask proposals", ICCV (2021)
  • C. Zhang et al., "Cyclesegnet: Object co-segmentation with cycle refinement and region correspondence", TIP (2021)
  • M. Hamilton et al., "Unsupervised Semantic Segmentation by Distilling Feature Correspondences", ICLR (2022)
  • T. Ke et al., "Unsupervised Hierarchical Semantic Segmentation with Multiview Cosegmentation and Clustering Transformers", CVPR (2022)
  • A. Vobecky et al., "Drive&Segment: Unsupervised Semantic Segmentation of Urban Scenes via Cross-modal Distillation", arxiv (2022)
  • G. Shin et al., "ReCo: Retrieve and Co-segment for Zero-shot Transfer", NeurIPS (2022)
  • B. Li et al., "Language-driven Semantic Segmentation", ICLR (2022)